

**Research Report** 

# Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia

Yonggang Li<sup>a,b</sup>, Zhenfeng Xu<sup>a</sup>, Gregory D. Ford<sup>a,\*</sup>, DaJoie R. Croslan<sup>a</sup>, Tariq Cairobe<sup>a</sup>, Zhenzhong Li<sup>b</sup>, Byron D. Ford<sup>a</sup>

<sup>a</sup>Department of Anatomy and Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Drive, SW; MRC 222, Atlanta, GA 30310, USA

<sup>b</sup>Department of Human Anatomy, Shandong University, Shandong Province, China

#### ARTICLE INFO

Article history: Accepted 15 September 2007 Available online 22 September 2007

Keywords: Apoptosis Acetylcholine receptor inducing activity (ARIA) ErbB, excitotoxicity Glial growth factor (GGF) Heregulin Inflammation Ischemia Neu differentiation factor (NDF) Stroke

#### ABSTRACT

Neuregulin-1 (NRG-1) is a growth factor with potent neuroprotective capacity in ischemic stroke. We recently showed that NRG-1 reduced neuronal death following transient middle cerebral artery occlusion (tMCAO) by up to 90% with an extended therapeutic window. Here, we examined the neuroprotective potential of NRG-1 using a permanent MCAO ischemia (pMCAO) rat model. NRG-1 reduced infarction in pMCAO by 50% when administered prior to ischemia. We previously demonstrated using gene expression profiling that pMCAO was associated with an exaggerated excitotoxicity response compared to tMCAO. Therefore, we examined whether co-treatment with an inhibitor of excitotoxicity would augment the effect of NRG-1 following pMCAO. Both NRG-1 and the N-methyl-D-aspartate (NMDA) antagonist MK-801 similarly reduced infarct size following pMCAO. However, combination treatment with both NRG-1 and MK-801 resulted in greater neuroprotection than either compound alone, including a 75% reduction in cortical infarction compared to control. Consistent with these findings, NRG-1 reduced neuronal death using an in vitro ischemia model and this effect was augmented by MK-801. These results demonstrate the efficacy of NRG-1 in pMCAO rat focal ischemia model. Our findings further indicate the potential clinically relevance of NRG-1 alone or as a combination strategy for treating ischemic stroke.

© 2007 Elsevier B.V. All rights reserved.

#### 1. Introduction

The neuregulins are a family of multipotent growth factors that includes acetylcholine receptor inducing activities (ARIAs), glial growth factors (GGFs), heregulins and neu differentiation factors (NDFs) (Falls et al., 1993; Ho et al., 1995; Holmes et al., 1992; Marchionni et al., 1993; Wen et al., 1992). A number of recent reports from our laboratory and others have shown that administration of NRG-1 reduces

\* Corresponding author. Fax: +1 404 752 1041.

E-mail address: bford@msm.edu (G.D. Ford).

0006-8993/\$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.brainres.2007.09.037

delayed ischemic cortical damage following transient middle cerebral artery occlusion (tMCAO) when administered before the onset of ischemia in rats (Guo et al., 2006; Shyu et al., 2004; Xu et al., 2004) or after tMCAO with an extended therapeutic window (Xu et al., 2006). The neuroprotective effects of the single administration of NRG-1 were seen up to 2 weeks following treatment. NRG-1 was neuroprotective if administered either before or 13.5 h after transient MCAO and resulted in a significant improvement of functional



Fig. 1 – NRG-1 treatment reduces pMCAO-induced brain infarction. Representative TTC stained brain sections are shown where rats were injected with vehicle (a; n=5) or NRG-1 (b; n=5) before pMCAO. Animals were killed 24 h later and the brains were sliced into 2 mm sections and stained with 2,3,5-triphenyltetrazolium chloride (TTC). Infarct volumes in brains from vehicle and NRG-1 treated animals are shown in the graph (c). Values are presented as mean  $\pm$  SD; \* denotes significant difference from respective vehicle treated animals (P<0.01).

neurological outcome. NRG-1 also prevented glial activation, apoptosis and pro-inflammatory gene expression, further suggesting a role for NRG-1 in preventing delayed neuronal death following ischemia.

Many stroke investigators consider permanent MCAO (pMCAO) more ideal than tMCAO as a model for human stroke (STAIR, 1999). Therefore, in this study, we investigated the therapeutic potential of NRG-1 in the pMCAO model. Our findings demonstrated that NRG-1 is a potent neuroprotectant in pMCAO. We also showed that simultaneous NRG-1 administration and inhibition of glutamate excitotoxicity provided enhanced neuroprotection compared to either agent alone. These findings may result in the development of novel therapeutic strategies for the treatment of stroke.

#### 2. Results

#### 2.1. NRG-1 reduced neuronal damage and improves neurological outcome following MCAO

Rats were treated with NRG-1 immediately before pMCAO and sacrificed after 24 h. Fig. 1 illustrates a typical TTC staining of brain sections treated with vehicle or NRG-1 prior to pMCAO. Compared to control (Fig. 1a), pre-treatment with NRG-1 drastically reduced infarct volume after pMCAO (Fig. 1b). Infarct volume in the vehicle treated animals was 216.8±25.0 mm<sup>3</sup>. NRG-1 reduced the total infarct volume by 47.2% (Fig. 2).

The relative reduction in cortical and subcortical neuronal death was calculated. The infarct volume of control animals represented 54.3% of the total size of the ipsilateral hemisphere. The majority of the injury was localized to cortical brain regions. Treatment with NRG-1 resulted in an infarct that was reduced to represent only 26% of the total hemisphere; a 51% reduction in infarct size. NRG-1 treatment reduced the percentage of infarction in the cerebral cortex by 57% and by 41% in subcortical regions (Fig. 3).

### 2.2. Combination treatment with NRG-1 and MK-801 prevents infarction following pMCAO

We previously demonstrated that administration of NRG-1 prior to tMCAO prevented neuronal death by up to 90% following ischemia and reperfusion (Xu et al., 2005a, 2004). However, no further protection was conferred in the pMCAO model even when a twofold higher dose of NRG-1 was administered (data not shown). It is plausible that NRG-1 was not equally effective in the pMCAO model due to additional mechanisms that may be involved in pMCAO that are not available to NRG-1 treatment. Previous results from our laboratory using EASE software (Ford et al., 2006) showed that tMCAO/reperfusion was associated with apoptotic cell death and inflammation, which have been shown to be blocked by NRG-1 (Guo et al., 2006; Xu et al., 2005b, 2004). EASE identified



Fig. 2 – NRG-1 treatment reduces pMCAO-induced brain infarction. Infarct volumes in brains from vehicle and NRG-1 treated animals are shown in the graph. Values are presented as mean±SD; \* denotes significant difference from respective vehicle treated animals (P<0.01).

Download English Version:

## https://daneshyari.com/en/article/4330362

Download Persian Version:

https://daneshyari.com/article/4330362

Daneshyari.com