

available at www.sciencedirect.com

www.elsevier.com/locate/brainres

BRAIN RESEARCH

Research Report

Involvement of cellular prion protein in the nociceptive response in mice

Flavia Carla Meotti^{c,1}, Cristiane Lima Carqueja^{b,1}, Vinícius de Maria Gadotti^a, Carla I. Tasca^b, Roger Walz^{d,e}, Adair R.S. Santos^{a,*}

ARTICLE INFO

Article history: Accepted 8 March 2007 Available online 13 March 2007

Keywords:
Cellular prion protein
Thermal and chemical nociception
Inflammation

ABSTRACT

The role of the cellular prion protein (PrPc) in neuronal functioning includes neuronal excitability, cellular adhesion, neurite outgrowth and maintenance. Here we investigated the putative involvement of the PrPc function on the nociceptive response using PrPc null (Prnp^{0/0}) and wild-type (Prnp^{+/+}) mice submitted to thermal and chemical models of nociception. PrPc null mice were more resistant than wild-type mice to thermal nociception of the tail-flick test. However, no significant difference was found on the hot plate test. In the acetic acid-induced visceral nociception, PrPc null mice showed an enhanced response when compared to wild-type mice. However, there was no difference between Prnp^{0/0} and wild-type mice on glutamate- and formalin-induced licking behaviour and Freund's Complete Adjuvant (FCA)-induced mechanical allodynia. PrPc null mice developed significantly lower paw edema than wild-type mice. In addition, the visceral conditioning stimuli produced by a previous injection of acetic acid (20 days before testing) significantly reduced early and late phases of formalin-induced nociception in wild-type mice. In contrast, the same pre-treatment did not alter the formalin response in PrPc null mice. These results indicate a role of PrPc in the nociceptive transmission, including the thermal tail-flick test and visceral inflammatory nociception (acetic acid-induced abdominal constriction). Our findings show that PrPc is involved with a response mediated by inflammation (paw edema) and by visceral conditioning stimuli.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Cellular prion protein (PrP^c) is a glycosyl-phosphatidylinositol anchored cell surface glycoprotein that is mainly expressed in

neurons and, to a lesser extent, in other types of cells. An alteration in the PrP^c secondary structure, with a much higher proportion of beta-sheet conformational domains, leads to an accumulation of the abnormal protein prion scrapie. This

^aDepartamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brasil

^bDepartamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brasil

^cDepartamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, 97110-000, Brasil

^dDepartamento de Clínica Médica, Hospital Universitário, Universidade Federal, de Santa Catarina – UFSC, Florianópolis, SC, 88.040-970, Brasil

^eCentro de Cirurgia de Epilepsia, Hospital Governador Celso Ramos, Florianópolis, SC, 88.015-270, Brasil

^{*} Corresponding author. Fax: +55 48 37219672. E-mail address: arssantos@ccb.ufsc.br (A.R.S. Santos).

¹ Both authors have contributed equally to this study.

results in spongiform encephalopathy, in humans and animals (Prusiner, 1998).

Recent studies have investigated the physiological function of PrPc (Martins et al., 2002; Walz et al., 2002). Animals in which the PrPc gene (Prnp) was constitutively ablated presented an enhance in the neuronal excitability in vitro, either in constitutively or post-natal PrPc null mice (Walz et al., 2002; Colling et al., 1996; Collinge et al., 1994; Maglio et al., 2004; Mallucci et al., 2002). These animals also showed a higher sensitivity to seizures in vivo (Walz et al., 1999). The clearance of extracellular glutamate through astrocytic uptake was decreased in PrPc null mice (Brown and Mohn, 1999). However, PrPc is not directly related to neuronal glutamate uptake or release (Thais et al., 2006). PrPc is also implicated in the protection against oxidative stress (Brown, 2001; Klamt et al., 2001), modulation of neuronal apoptosis (Chiarini et al., 2002; Lopes et al., 2005; Zanata et al., 2002), cellular adhesion, neurite outgrowth (Lopes et al., 2005; Graner et al., 2000a) and maintenance (Walz et al., 2002; Graner et al., 2000b).

Although most findings concerning PrP^c physiology are related to the nervous system, studies have found a role for PrP^c in antioxidant protection not only in the brain, but also in the liver, muscle and heart (Klamt et al., 2001). It has recently been shown that PrP^c modulates phagocytosis and the inflammatory response in vitro and in vivo (Almeida et al., 2005).

Related cases of spongiform encephalopathy in humans reported that patients presented with a progressive increase in pain (Lundberg, 1998; Sugai et al., 2000). Although a higher pain sensibility was attributed to nerve degeneration (Sugai et al., 2000), how the alteration in PrP^c structure affects responsiveness to pain is still unclear. In an attempt to approach the PrP^c role in pain transmission, the present study investigated the nociceptive response in PrP^c null and wild-type mice that were submitted to thermal and chemical models of nociception.

2. Results

2.1. Thermal nociceptive response to hot-plate and tail-flick test

Acute nociceptive response evoked by a noxious heat stimulus in the tail-flick assay displayed different responses between PrP^c null and wild-type mice. Fig. 1A illustrates that PrP^c null mice were more resistant than wild-type mice to the thermal stimulus [F(1,11)=7.1, P<0.05]. No significant differences were found between PrP^c null and wild-type mice on the hot-plate nociceptive heat stimulus (50.5, 55.0 and 58.0 °C) [F(1,36)=3.73, P>0.05]. Two-way analysis of variance (ANOVA) revealed no significant interaction between temperature and genotype [F(2,36)=0.48, P>0.05] (Fig 1B).

2.2. Abdominal constriction induced by acetic acid

The response to acetic acid-induced visceral nociception was increased in PrP^c null mice in the first 20 min after acetic acid administration. The number of abdominal constrictions was significantly different among the groups at 5 min

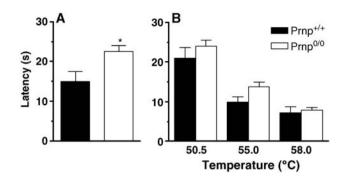


Fig. 1 – Response to thermal noxious stimuli in tail-flick (A) and hot-plate tests (B). The black columns $(Prnp^{+/+})$ and white columns $(Prnp^{0/0})$ represent the mean ± SE of seven animals. A one-way ANOVA was performed in A and a two-way ANOVA (considering genotype and temperature) was performed in B. The asterisk denotes significant difference from $Prnp^{+/+}$ mice by Student's t-test (*P<0.05).

[F(1,10) = 20.9, P < 0.01], 10 min [F(1,10) = 8.4, P < 0.05] and 15 min [F(1,10) = 28.7, P < 0.001] (Fig. 2). The total amount of abdominal constrictions in 20 min of observation is shown in the inset of Fig. 2 [F(1,10) = 225.5, P < 0.001].

2.3. Mice nociceptive response induced by intraplantar injection of glutamate and formalin

The direct activation of peripheral sensorial fibers C by intraplantar injection of glutamate caused a licking behaviour that was similar between PrP^c null and wild-type mice [F(1,14)=0.21, P>0.05; Fig. 3A]. The intraplantar treatment with formalin exhibited the same profile between both genotype [F(1,14)=0.47, P>0.05] in the early phase and [F(1,14)=0.02, P>0.05] in the late phase (Fig. 3B).

2.4. Paw edema and allodynia induced by FCA

The intraplantar injection of FCA produced a profound and long-lasting mechanical allodynia in the injected paw of PrP^{c} null and wild-type mice. The allodynia was initiated 2 h after FCA administration and it was maintained for 8 days [F(1,196) = 52.5, P<0.05, from baseline]. A three-way analysis of variance revealed no interaction between genotype, presence of FCA and time after FCA injection [F(6,196) = 0.04, P>0.05]. No difference was found between PrP^{c} null and wild-type mice in mechanical allodynia (Fig. 4A).

The FCA injection enhanced paw volume (edema) in PrP^{c} null and wild-type mice from 2 h after FCA injection and it was maintained for 8 days [F(1,224)=492.05, P<0.05, from baseline]. A three-way analysis of variance revealed no interaction between genotype, presence of FCA and time after FCA injection [F(7,224)=0.626, P>0.05]. Edema development was significantly lower in PrP^{c} null than wild-type mice at 12, 48 and 96 h after FCA administration (Fig. 4B).

2.5. Visceral conditioning stimuli

The treatment of animals with acetic acid (AA 0.6%, 10 ml/kg, i.p.) produces a visceral conditioning stimulus, which reduces

Download English Version:

https://daneshyari.com/en/article/4331110

Download Persian Version:

https://daneshyari.com/article/4331110

Daneshyari.com