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A number of recent works have investigated the notion of “computational fields” as a 
means of coordinating systems in distributed, dense and dynamic environments such as 
pervasive computing, sensor networks, and robot swarms. We introduce a minimal core 
calculus meant to capture the key ingredients of languages that make use of computational 
fields: functional composition of fields, functions over fields, evolution of fields over time, 
construction of fields of values from neighbours, and restriction of a field computation to 
a sub-region of the network. We formalise a notion of type soundness for the calculus 
that encompasses the concept of domain alignment, and present a sound static type 
inference system. This calculus and its type inference system can act as a core for 
actual implementation of coordination languages and models, as well as to pave the 
way towards formal analysis of properties concerning expressiveness, self-stabilisation, 
topology independence, and relationships with the continuous space–time semantics of 
spatial computations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a world ever more densely saturated with computing devices, it is increasingly important to have effective tools for 
developing coordination strategies that can govern collections of these devices [8]. The goals of such systems are typically 
best expressed in terms of operations and behaviours over aggregates of devices, e.g., “send a tornado warning to all phones 
in the forecast area,” or “activate all displays guiding me along a route towards the nearest group of my friends.” The 
available models and programming languages for constructing distributed systems, however, have generally operated at the 
level of individual devices and their interactions, thereby obfuscating the design process. Effective models and programming 
languages are needed to allow the construction of distributed systems at the natural level of aggregates of devices. These 
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must also be associated with a global-to-local mapping that links the aggregate-level specification to the operations and 
interactions of individual devices that are necessary to implement it.

Recently, approaches based on models of computation over continuous space and time have been introduced, which 
promise to deliver aggregate programming capabilities for the broad class of spatial computers [10]: networks of devices 
embedded in space, such that the difficulty of moving information between devices is strongly correlated with the physical 
distance between devices. Examples of spatial computers include sensor networks, robot swarms, mobile ad-hoc networks, 
reconfigurable computing, emerging pervasive computing scenarios, and colonies of engineered biological cells.

A large number of formal models, programming languages, and infrastructures have been created with the aim of sup-
porting computation over space–time, surveyed in [7]. Several of these are directly related to the field of coordination 
models and languages, such as the pioneer model of TOTA [29], the (bio)chemical tuple-space model [47], the στ -Linda 
model [50], and the pervasive ecosystems model in [52]. Their recurrent core idea is that through a process of diffu-
sion, recombination, and composition, information injected in one device (or a few devices) can produce global, dynamically 
evolving computational fields—functions mapping each device to a structured value. Such fields are aggregate-level distributed 
data structures which, due to the ongoing feedback loops that produce and maintain them, are generally robust to changes 
in the underlying topology (e.g., due to faults, mobility, or openness) and to unexpected interactions with the external envi-
ronment. They are thus useful for implementing and composing self-organising coordination patterns to adaptively regulate 
the behaviour of complex distributed systems [29,47,48].

A sound engineering methodology for space–time coordination systems will require more than just specification, but also 
the ability to predict to a good extent the behaviour of computational fields from the underlying local interaction rules—
a problem currently solved only for a few particular cases (e.g., [6,3]). This paper contributes to that goal by:

1. Introducing the computation field calculus (CFC), a minimal core calculus meant to precisely capture a set of key in-
gredients of programming languages supporting the creation of computational fields: composition of fields, functions 
over fields, evolution of fields over time, construction of fields of values from neighbours, and restriction of a field 
computation to a sub-region of the network.

2. Formalising a notion of type soundness for CFC that encompasses the concept of domain alignment (i.e., proper sharing 
of information between devices), and presenting a sound static type inference system supporting polymorphism à la 
ML [17]. The main challenges in the design of the type system are to ensure domain alignment (which is complicated 
by the fact that the same expression may be evaluated many times, even recursively) and to support polymorphism à 
la ML without breaking domain alignment.

CFC is largely inspired by Proto [5,33], the archetypal spatial computing language (and is in fact a much simpler frag-
ment of it). As with Proto, it is based on the idea of expressing aggregate system behaviour by a functional composition of 
operators that manipulate (evolve, combine, restrict) continuous fields. Critically, these specifications can be also interpreted 
as local rules on individual devices, which are iteratively executed in asynchronous “computation rounds”, comprising re-
ception of all messages from neighbours, computing the local value of fields, and spreading messages to neighbours. The 
operational semantics of the proposed calculus precisely models single device computation, which is ultimately responsible 
for all execution in the network. The distinguished interaction model of this approach, which is formalised into a calculus 
in this paper, is based on representing state and message content in an unified way as an annotated evaluation tree. Field 
construction, propagation, and restriction are then supported by local evaluation “against” the evaluation trees received from 
neighbours. Not only is field calculus much simpler than Proto (and thus a tractable target for analysis), but the proposed 
formalisation also goes beyond Proto (which is a dynamically typed language) by introducing a static type inference system 
and a type soundness property that encompasses the notion of domain alignment, thereby enabling static analysis of the 
soundness and resilience properties of field computations.

The work thus developed formalises key constructs of existing coordination languages or models targeting spatial com-
puting. As such, we believe that the calculus and its type inference system pave the way towards formal analysis of key 
properties applicable to various coordination systems, concerning expressiveness, self-stabilisation, topology independence, 
and relationships with the continuous space–time semantics of spatial computations.

The remainder of the paper is organised as follows: Section 2 describes the linguistic constructs of CFC and their ap-
plication to system coordination. Section 3 illustrates how single devices interpret the CFC constructs locally. Section 4
illustrates some examples of programs to show the expressiveness of CFC. Section 5 formalises the operational semantics 
of CFC. Section 6 illustrates some examples of ill-formed programs to motivate the design of the type system. Section 7
presents the type inference system and its key properties (domain alignment and type soundness). Section 8 briefly surveys 
the main elements of a toolchain that is under development and grounds on CFC. Finally, Section 9 discusses related work 
and Section 10 concludes by outlining possible directions for future work. The appendix contains the proofs of the main 
results.
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