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Shape analysis is concerned with the compile-time determination of the ‘shape’ the heap 
may take at runtime, meaning by this the pointer chains that may happen within, and 
between, the data structures built by the program. This includes detecting alias and sharing 
between the program variables.
Functional languages facilitate somehow this task due to the absence of variable updating. 
Even though, sharing and aliasing are still possible. We present an abstract interpre-
tation-based analysis computing precise information about these relations. In fact, the 
analysis gives an information more precise than just the existence of sharing. It informs 
about the paths through which this sharing takes place. This information is critical in or-
der to get a modular analysis and not to lose precision when calling an already analysed 
function.
The motivation for the analysis in our case is the need of knowing at compile time which 
variables are at risk of containing dangling pointers at runtime, in a language with explicit 
memory disposal primitives.
The main innovation with respect to the literature is the use of regular languages to specify 
the possible pointer paths from a variable to its descendants. This additional information 
makes the analysis much more precise while still being affordable in terms of efficiency. 
We have implemented it and give convincing examples of its precision.

© 2014 Elsevier B.V. All rights reserved.

1. Motivation

Shape analysis is concerned with statically determining the connections between program variables through pointers in 
the heap that may occur at runtime. As particular cases, it includes sharing and alias between variables. To know the shape 
of the heap for every possible program execution is undecidable in general, but the analysis computes an over-approximation 
of this shape. This means that it may include sharing relations that will never happen at runtime.

Much work has been done in imperative languages (see Section 7), specially for C. There, the sharing detection is aggra-
vated by the fact that variables are mutable, and they may point to different places at different times. We have addressed 
the problem for a first-order functional language. This simplifies some of the difficulties since variables do not mutate. 
A consequence is that the inferred relations are immutable considering different parts of the program text. Another conse-
quence is that the heap is never updated. It can only be increased with new data structures, or decreased by the garbage 
collector. But the latter cannot produce effects in its live part.
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unshuffle []! = ([],[])
unshuffle (x:xs)! = (x:ys2, ys1)

where (ys1,ys2) = unshuffle xs
merge []! ys! = ys
merge (x:xs)! []! = x:xs
merge (x:xs)! (y:ys)! | x <= y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys
msort []! = []
msort [x]! = [x]
msort xs! = merge (msort xs1) (msort xs2)

where (xs1, xs2) = unshuffle xs

Fig. 1. mergesort algorithm in constant heap space.

Our analysis puts the emphasis on three properties: (1) modularity; (2) precision; and (3) efficiency. For the sake of 
scalability, it is important for the analysis to be modular. The results obtained for a function should summarise the shape 
information so that the user functions should be able to compute all the sharing produced when calling it. Looked at from 
outside, and given that the language is functional, a function may only create sharing between its result and its arguments, 
or between the results themselves, but it can never create new sharing between the arguments. The internal variables 
become dead after the call, so the result of analysing a function only contains its input–output sharing behaviour. Differently 
from previous works, we compute the paths through which this sharing may occur in a precise way. This information is used 
to propagate to the caller the sharing created by a call. In this way, large programs need not to be analysed globally, but 
just a function at a time.

The motivation for our analysis is a safety type system we have developed for a functional language, called Safe, with 
explicit memory disposal [1]. This feature may create dangling pointers at runtime. The language also provides automatically 
allocated and deallocated heap regions, instead of having a runtime garbage collector. This feature can never create dangling 
pointers, so it plays no role in the current work and we will not mention it anymore.

The explicit memory disposal is achieved by means of a destructive pattern matching, denoted with symbol !, or a 
case! expression. By applying any of them, we can reuse the cell corresponding to the parameter or variable affected 
by it. This feature may be used in our language to implement data structures whose updating needs no additional heap 
space or constant heap space functions over data structures, see [2] for examples. As an example, in Fig. 1 we show an 
implementation of the mergesort algorithm for sorting a list in constant heap space. Each cell of the original list is disposed 
by unshuffle; lists xs1 and xs2 are disposed by the recursive calls to msort; and finally the results of the recursive calls are 
disposed by merge.

The type inference algorithm [3] assigns the program variables safety marks: d for disposed, s for safe and r for in-
danger variables. Each time a variable is marked as disposed, all those variables that may point to cells belonging to its 
recursive substructure are marked as in-danger, because they can potentially contain dangling pointers. The type rules 
propagate the marks and control how the variables are used. For instance, in a let expression in-danger and already dis-
posed variables in the let-bound expression cannot be mentioned in the main expression. We have proved that passing 
successfully the type inference phase gives total guarantee that there will not be dangling pointers.

So, for typechecking a function, it is critical to know at compile time which variables may point to the disposed data 
structures, and for this we need a sharing analysis. Our prior prototype shape analysis done in [4] was correct but imprecise 
at some points. In particular, the type system rejected the mergesort algorithm shown in Fig. 1, due to the imprecision of 
the sharing analysis results. As we will see in more detail in the following section, the reason for this is that it does not 
suffice knowing that two variables share a common descendant, but we should more precisely know through which paths 
this sharing occurs, and that is why in this work we introduce regular languages representing paths in the heap.

We believe that the sharing analysis presented here could be equally useful for other purposes, since it provides precise 
information about the heap shape. Note that some shapes, such as cyclic or doubly linked lists, cannot be created by a 
functional language, so they are out of the scope of our analysis. But, in some cases, the analysis is capable of asserting that 
a given structure is a tree, i.e. it does not have internal sharing (see Section 6 for an example).

The main contribution of this paper with respect to [4] is the incorporation of regular languages to our abstract domain. 
Each word of the language defines a pointer path within a data structure. Having regular languages introduces additional 
problems such as how to combine them during the analysis, how to compare them, and specially how to guarantee that 
a fixpoint will be reached after a finite number of iterations. We show that we have increased the precision of our prior 
analysis, and that the new problems can be tackled with a reasonable efficiency.

The plan of the paper is as follows: Section 2 provides a mild introduction to the analysis via a small example. Then, 
Sections 3, 4 and 5 contain all the technical material about the abstract domain, abstract interpretation rules, correctness, 
implementation, widening, and cost of the operations done on regular languages. Section 6 gives abundant examples of the 
sharing results obtained by our analysis and their corresponding running times. Finally, Section 7 concludes and discuss 
some related work.

This paper is an extended version of [5]. The additional material here mainly concerns Sections 4, 5, and 6. In the first 
one, a much detailed proof of correctness is given. In the second one, we compare two alternative implementations (instead 
of the single one presented in [5]) in which regular languages are represented either by nondeterministic automata or by 
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