Science of Computer Programming 111 (2015) 190-211

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming :

www.elsevier.com/locate/scico i

Time refinement in a functional synchronous language @CmssMark

Louis Mandel ®*, Cédric Pasteur®*!, Marc Pouzet ¢:P-

@ IBM Research, Yorktown Heights, NY, USA

b pI, Ecole normale supérieure, Paris, France

€ INRIA Paris-Rocquencourt, France

d Université Pierre et Marie Curie, Paris, France

ARTICLE INFO ABSTRACT

Article history: Concurrent and reactive systems often exhibit multiple time scales. This situation occurs,
Received 12 December 2013 for instance, in the discrete simulation of a sensor network where the time scale at which
Received in revised form 22 June 2015 agents communicate is very different from the time scale used to model the internals of
Accepted 2 July 2015 an agent

Availabl line 10 July 2015
vailable online 10 July The paper presents reactive domains to simplify the programming of such systems. Reactive

domains allow for several time scales to be defined and they enable time refinement, that is,

gﬁﬂfﬁgus languages the replacement of a system with a more detailed version, without changing its observed
Functional languages behavior.

Semantics Our work applies to the ReAcTIVEML language, which extends an ML language with
Type systems synchronous programming constructs a la Esterel. We present an operational semantics

for the extended language, a type system that ensures the soundness of programs, and
a sequential implementation. We discuss how reactive domains can be used in a parallel
implementation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The concept of logical time greatly simplifies the programming of concurrent and reactive systems. It is the basis of syn-
chronous languages [1] like ESTEREL [2]. Its principle is to see the execution of a reactive system as a sequence of reactions,
called instants, where all communications and computations are considered to be instantaneous during one reaction. This
interpretation of time is logical because it does not account for exact computation time and the precise way all the compu-
tations are done during a reaction. It has been originally introduced for programming real-time embedded controllers, but
it is applicable for a wider range of applications, in particular large scale simulations.

Consider, for example, the simulation of the power consumption in a sensor network [3]. In order to precisely estimate
the power consumption, we need to simulate the hardware of certain nodes, in particular the radio. There are now multiple
time scales: for example, the time scale of the software (i.e., MAC protocol) is in milliseconds, while the time step of the
hardware would be in microseconds. The communication between these time scales must be restricted. E.g., a slow process,
whose time scale is in millisecond, cannot observe all the changes of a faster process, whose scale is in microseconds.
Said differently, a signal that is produced by a fast process cannot be used to communicate a value with a slower process.
Furthermore, depending on the level of precision required for the simulation, it makes sense to be able to replace a precise

* Corresponding authors.
E-mail addresses: Imandel@us.ibm.com (L. Mandel), cedric.pasteur@ansys.com (C. Pasteur), marc.pouzet@ens.fr (M. Pouzet).
T Now at ANSYS-Esterel Technologies, Toulouse, France.

http://dx.doi.org/10.1016/j.scic0.2015.07.002
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.07.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:lmandel@us.ibm.com
mailto:cedric.pasteur@ansys.com
mailto:marc.pouzet@ens.fr
http://dx.doi.org/10.1016/j.scico.2015.07.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.07.002&domain=pdf

L. Mandel et al. / Science of Computer Programming 111 (2015) 190-211 191

Hb
5

(a) Sampling (b) Reactive domains

Fig. 1. Sampling vs. Reactive domains (each vertical line or box represent one instant of the corresponding clock, horizontal lines represent processes
running in parallel).

but costly version of a process that may last several steps by an approximated version, possibly instantaneous. Moreover,
this replacement should not impact the way the process interacts with other processes. Such a feature has been called time
or temporal refinement [4].

Synchronous data-flow languages provide a solution to this problem that is based on sampling. A slower time scale is
obtained by choosing a subset of instants according to a boolean condition. In this paper, we propose reactive domains, that
allow doing the opposite. Instead of creating a new time scale which is slower than an other one, a reactive domain creates
a faster time scale by subdividing an instant of the parent domain. The sequence of instants of a reactive domain stay local
to it, that is, they are un-observable from outside, as shown in Fig. 1. Reactive domains make time refinement easy as they
allow local computation steps to be hidden (Section 3).

Our work is applied to the REAcTIVEML language [5], which augments ML with synchronous programming constructs a la
Esterel (Section 2).2 We show how to extend the operational semantics of the language to incorporate reactive domains (Sec-
tion 4). The soundness of programs in the extended setting can be checked using a type-and-effect system, called a clock
calculus, since it is reminiscent of the one in data-flow synchronous languages [1] (Section 5). Yet, the clock calculus of
REACTIVEML applies to a language where synchronous constructs are those of ESTEREL and with ML features. Then, we prove
the soundness of the type system with respect to the semantics (Section 6). We also give an overview of the implementation
of the extended language and some ideas for parallel execution (Section 7). The article ends with a discussion of several
extensions (Section 8) and related work (Section 9).

2. The ReactiveML language

ReacTIVEML? [5,6] is based on the reactive model of Boussinot which first appeared in the REACTIVEC language [7]. The
reactive model applies to general purpose languages the principles of the synchronous model found in synchronous lan-
guages [1].

2.1. Examples

REACTIVEML is a reactive extension of ML, so any ML program is also a valid REACTIVEML program. The concrete syntax
of the language is the one of OCamL,* upon which REACTIVEML is built. For example, we can define a tree data type and the
preorder iteration of a function on a tree by:
type ’‘a tree =
| Empty
| Node of ’'a tree * 'a * 'a tree

let rec preorder f t = match t with
| Empty -> ()
\ Node(l, v, r) -> f v; preorder f 1; preorder f r

The type of trees, 'a tree, is parametrized by the type ‘a of its labels. A tree is either empty, or made of a left child, a
label and a right child. The preorder traversal of the tree is implemented with a simple recursive function that applies a
given function to the label and recurses first on the left child and then on the right one. We can almost as easily define the
level-order traversal of the tree in REACTIVEML:

let rec process levelorder f t = match t with
| Empty -> ()
| Node (1, v, r) ->

f v; pause;

(run levelorder £ 1 || run levelorder f r)

This example defines a recursive process named 1evelorder. Unlike regular ML expressions, such as a call to preorder f t,
which is said to be instantaneous, the execution of a process can last several logical instants. Here, 1evelorder awaits the
next instant by using the pause operator and then recursively calls itself on the left and right children in parallel. The ||

2 The compiler and the examples mentioned in the paper are available at http://reactiveml.org/scp15.
3 http://www.reactiveml.org.
4 http://ocaml.org.

http://reactiveml.org/scp15
http://www.reactiveml.org
http://ocaml.org

Download English Version:

https://daneshyari.com/en/article/433198

Download Persian Version:

https://daneshyari.com/article/433198

Daneshyari.com

https://daneshyari.com/en/article/433198
https://daneshyari.com/article/433198
https://daneshyari.com

