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Numerous properties of random graphs are highly predictable. Even by exploring a small 
part reliable observations are possible regarding their structure and size. An unfortunate 
observation is that standard models for random graphs, such as the Erdös–Rényi model, do 
not reflect the structure of the graphs that describe distributed systems and protocols.
In this paper we propose to use the parallel composition of such random graphs to model 
‘real’ state spaces. We show how we can use this structure to predict the size of state 
spaces, and we can use it to explain that software bugs are in practice far easier to find 
than predicted by the standard random graph models. By practical experiments we show 
that our new probabilistic model is an improvement over the standard model in predicting 
properties of transition systems representing realistic systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Modelling the behaviour of systems is gaining popularity. For complex real-world systems however the transition systems 
of their models easily become very large. We ran into such an example while modelling an UART (universal asynchronous 
receiver/transmitter) for the company NXP. Using highway search [4], a parallel simulation technique far more efficient than 
random simulation in finding problematic situations, we did not find a suspected error. The question that we needed to 
answer was how large the probability was that the error really was absent. A typical derived question that immediately 
jumps to mind is to estimate the size of the state space.

In order to answer such questions, one can resort to random graphs [2]. The Erdös–Rényi model is a commonly used 
model. It has a set S of N states (nodes, vertices) and a set of transitions →. There are two highly similar variants, one 
where each conceivable directed edge is present with some probability p, and one where M transitions are chosen uniformly 
at random out of the N(N − 1) possibilities.

Erdös–Rényi random graphs are a little counterintuitive if it comes to modelling transition systems that represent be-
haviour. Transition systems have an initial state and this initial state has outgoing transitions to states that in general also 
have outgoing transitions. In the Erdös–Rényi random graph the initial state may not have outgoing transitions (actually 
with a fairly high probability e−λ where λ is the fan-out, i.e., the expected number of transitions leaving a state). Therefore, 
we choose a slightly different model, where each state has a fixed number λ of outgoing transitions each of which goes to 
randomly selected states of the transition system. All choices are made independently of each other.

Given this model of a random transition system we estimate the size of a transition system by a random walk through 
the graph. By random simulation we have evidence that these estimates are very good. However, by applying this technique 
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to realistic models (e.g., Firewire P1394 protocol [10]) it becomes obvious that the structure of these random graphs is not 
really a reflection of a ‘real state space’.

As an alternative model for the structure of realistic systems, we propose to use the Cartesian product of P parallel 
random transition systems, reflecting that a realistic system often consists of P more or less independent components. 
One could not only think of the components as independent parallel processes, but one can also consider the behaviour 
of subtasks or even variables as potential parallel components. These examples already show that complex systems are not 
built as one single monolithic piece, but assembled in a compositional fashion from smaller parts.

We develop techniques to estimate the sizes and fan-outs of the different components. Again, using random simulation 
we have verified that these estimation techniques are effective in retrieving these properties for state spaces that are gen-
erated as Cartesian products of random state spaces. More importantly, we estimate the sizes of ‘realistic state spaces’ and 
find that these estimates are close to the actual values and in particular far better than those we obtain using the ‘single 
threaded’ random graph model. There are also some disadvantages, in particular, the predictions are less stable and the 
numerical effort for the estimates is higher.

Our experiments provide evidence that P -parallel random transition systems could be a good representation of ‘realistic’ 
state spaces. Of course, the state spaces of real applications do not have a random structure. But having a random model 
that reflects ‘real’ state spaces reasonably well and that is sufficiently simple to allow mathematical analysis is really a great 
asset, because it leverages the power of random analysis to substantially increase our generic insight into the behaviour of 
real systems.

As an illustration of the potential power of the P -parallel model we apply it to the question of how effective testing is. 
In our experience it is remarkably easy to detect a known error by running a random test. According to the single threaded 
random graph model this is not possible. The probability of hitting an erroneous state by a random walk is far too small. 
However, if the error occurs in one of the states of one of the P -parallel components, it is far easier to find. Even stronger, 
if we know the sizes of the different components, we can come up with small numbers of required test runs to guarantee 
with high confidence that realistic systems are error free.

Related work As far as we know, there is not much work on the random structure of transition systems representing 
behaviour. The following is what we are aware of. Estimating the size of a Petri Net’s state space has been investigated 
in [15]. That work makes explicit use of the structure of a Petri Net and is only applicable when the Petri Net is constructed 
from a set of supported building blocks.

A more general approach was presented in [12] where, as in our work, a state space is seen as a directed graph. However, 
the authors do not compute an estimate, but instead only classify state spaces into one of three classes: small models, 
large models, and models that are too large and hence out of reach. In this work classification trees, neural networks and 
techniques similar to the Lincoln Index [9] are employed.

Inspired by [12], the authors of [3] present a method to compute the estimated size of the state space. There, the 
observed measure is the size of the breadth-first frontier that is still to be explored in relation to the number of states 
that have already been explored. By visual inspection, the authors determine that this curve should be approximated by a 
quadratic function and use least-squares fitting to compute the parameters and thereby an estimate for the state-space size.

2. Random state spaces

In this section we define the basic notions that we employ. We use directed graphs or transition systems without labels, 
as we do not need the labels in our exposition.

A state space is seen as a graph G = (S, →), with S being an arbitrary set of states (nodes, vertices) and → ⊆ S × S
being a multi-set of transitions (edges). If (s, s′) ∈ →, then we generally denote this by s → s′ . For the edges in the set →
we assume that every state has a fixed degree of outgoing edges, i.e., there is a fixed λ ∈ N such that |{s′ | s → s′}| = λ for 
all s ∈ S (where {s′ | s → s′} is a multi-set) and |E| denotes the size of a multi-set E . One can consider transition systems 
with a variable fan-out, but this will make the random graph model more complex, and therefore harder to use and of 
less predictive utility. If s → s′ , then s is called the source and s′ the target state of that edge. In a random state space it 
is assumed that for every such edge, given its source state s, every other state s′ is equally likely to be the target state. 
Furthermore, we define N = |S| and M = |→| to denote the number of states and transitions, respectively.

A tuple T =(G, s0) is called a random transition system, where G=(S, →) is a random state space as described above and 
s0∈S is an arbitrary, randomly chosen initial state. For such a random transition system, only the part reachable from the 
initial state is of interest, i.e., those states s′∈S for which s0 →∗ s′ holds (where →∗ denotes the reflexive transitive closure 
of →). Note that the number of reachable states is at most N .

This paper considers state spaces being the graph product of two or more random transition systems. Since taking the 
graph product is associative, we only consider the case of two random transition systems, which can then be repeated for 
more components. Thus, a product transition system T1×2 = (G, s0) with graph G = (S, →) and initial state s0 ∈ S is assumed 
to be composed from two random transition systems T1 = (G1, s1,0) and T2 = (G2, s2,0), with G1 = (S1, →1), G2 = (S2, →2), 
such that S = S1 × S2, s0 = (s1,0, s2,0), and (s1, s2) → (s′

1, s
′
2) iff either s1 →1 s′

1 and s2 = s′
2, or s1 = s′

1 and s2 →2 s′
2.

Note that it is assumed that the states in the product transition system T1×2 are opaque, i.e., from a state s = (s1, s2) ∈ S
the individual components s1 and s2 of the state cannot be recovered. Note also that we do not consider ‘synchronisa-
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