
Science of Computer Programming 110 (2015) 104–118

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A zoom-declarative debugger for sequential Erlang programs

Rafael Caballero a,∗, Enrique Martin-Martin a, Adrián Riesco a, Salvador Tamarit b

a Dpto. de Sistemas Informáticos y Computación, Fac. Informática, Universidad Complutense de Madrid, C/ Profesor José García 
Santesmases, 9, 28040 Madrid, Spain
b Babel Research Group, Fac. Informática, Universidad Politécnica de Madrid, Campus de Montegancedo, s/n. 28660 Boadilla del Monte, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 March 2015
Received in revised form 24 June 2015
Accepted 30 June 2015
Available online 8 July 2015

Keywords:
Erlang
Zoom debugging
Declarative debugging

We present a declarative debugger for sequential Erlang programs. The tool is started when 
a program produces some unexpected result, and proceeds asking questions to the user 
about the correctness of some subcomputations until an erroneous program function is 
found. Then, the user can refine the granularity by zooming in the function, checking 
the values bound to variables and the if/case/try-catch branches taken during the 
execution. We show by means of an extensive benchmark that the result is a usable, 
scalable tool that complements already existing debugging tools such as the Erlang tracer 
and Dialyzer. Since the technique is based on a formal calculus, we are able to prove the 
soundness and completeness of the approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Erlang [12] is a programming language that combines the elegance and expressiveness of functional languages (higher-
order functions, lambda abstractions, single assignments), with features required in the development of scalable commercial 
applications (garbage collection, built-in concurrency, and even hot-swapping). The language is used as the base of many 
fault-tolerant, reliable software systems. The development of these systems is a complicated process where tools such as 
discrepancy analyzers [23], test-case generators [27], or debuggers play an important rôle. In the case of debuggers, Erlang 
provides a useful trace debugger including different types of breakpoints, stack tracing, and other features. However, debug-
ging a program is still a difficult, time-consuming task—according to a National Institute of Standards and Technology (NIST) 
study, software engineers spend 70–80% of their time testing and debugging [31]. Therefore alternative or complementary 
debugging tools are still needed.

Taking advantage of the declarative nature of the sequential subset of Erlang, in this paper we present a new debugger 
based on the general technique known as declarative debugging [33]. Also known as declarative diagnosis or algorithmic 
debugging, this technique abstracts the execution details, which may be difficult to follow in declarative languages, to focus 
on the validity of the results. This approach was first proposed in the logic paradigm [25,37], where debugging programs 
including features like backtracking using a traditional trace debugger can be really difficult. Soon, declarative debugging was 
applied to functional [26,29] and multi-paradigm [6,24] languages. Declarative debuggers of non-strict functional languages 
display the terms evaluated to the point required by the actual computation, something very useful in these languages 
which include the possibility of representing infinite data structures. More recently, the same principles have been applied 

* Corresponding author.
E-mail addresses: rafacr@ucm.es (R. Caballero), emartinm@ucm.es (E. Martin-Martin), ariesco@fdi.ucm.es (A. Riesco), stamarit@babel.ls.fi.upm.es

(S. Tamarit).

http://dx.doi.org/10.1016/j.scico.2015.06.011
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.06.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:rafacr@ucm.es
mailto:emartinm@ucm.es
mailto:ariesco@fdi.ucm.es
mailto:stamarit@babel.ls.fi.upm.es
http://dx.doi.org/10.1016/j.scico.2015.06.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.06.011&domain=pdf


R. Caballero et al. / Science of Computer Programming 110 (2015) 104–118 105

Fig. 1. Erlang code implementing Vigenère cipher.

to object-oriented [7,22] programming languages. The basic idea of this scheme consists of asking questions to the user 
about the validity of the subcomputations associated to a computation that has produced an error until an erroneous 
fragment of code is located.

Our tool provides features such as trusting, support for higher-order functions and built-ins, and “don’t know” answers. 
In fact, checking the comparison from [30], we can see that our debugger has most of the features in state-of-the-art tools, 
although we still lack some elements such as a graphical user interface, or more navigation strategies. Typical declarative 
debuggers in functional programming usually look for incorrect functions. However, in real-world programs, functions can 
be quite intricate. Thus, detecting that a function is erroneous, although helpful, still leaves to the user the problem of 
finding where is the error inside the body function. For this reason we allow the user to employ declarative debugging also 
inside an erroneous function in order to detect the precise piece of code that caused the bug. We call this feature zoom 
debugging and constitutes, to the best of our knowledge, the first work where such a feature is described. The present work 
extends and completes the results in [8], where we introduced the foundations of the debugger, and in [9], where a short 
explanation of the tool was presented, by:

• Comparing in detail the different debugging techniques that can be used in Erlang, focusing on their strengths and 
flaws.

• Giving a detailed description of zoom debugging, which was just succinctly presented in [9]. This feature is not present 
in any other declarative debugger.

• Compiling a study of the applicability of the system to real programs. We have applied our debugger to a wide range of 
small-medium applications developed by others and real-world projects in the Erlang community obtained from GitHub. 
In all these cases our tool has been able to find the errors using a small number of questions. This gives us confidence 
on the usability and potential of the tool.

The rest of the paper is organized as follows: Section 2 introduces Erlang by means of a motivating example. Section 3
describes different techniques to debug Erlang and the similarities with our approach. Section 4 describes the main features 
of our tool, while Section 5 focuses on zoom debugging. Section 6 recounts the main theoretical results. Section 7 presents 
the experimental results obtained when using our tool, while Section 8 concludes and presents the future and ongoing 
work.

2. Motivating example

We start introducing a running example taken from the Erlang community. It is important to remark that the bug was 
already in the program and has not been introduced by the authors.

Fig. 1 presents a Vigenère cipher [5] written in Erlang, extracted from the programming chrestomathy Rosetta Code.1

The program exports the functions encrypt/2 and decrypt/2 that, given a text and a key, encipher or decipher it, 
respectively. The Vigenère cipher is a simple and well-known method for encrypting alphabetic text by adding modulo 26

1 http://rosettacode.org/mw/index.php?title=Vigen%C3%A8re_cipher.

http://rosettacode.org/mw/index.php?title=Vigen%C3%A8re_cipher


Download English Version:

https://daneshyari.com/en/article/433210

Download Persian Version:

https://daneshyari.com/article/433210

Daneshyari.com

https://daneshyari.com/en/article/433210
https://daneshyari.com/article/433210
https://daneshyari.com

