
Science of Computer Programming 107–108 (2015) 2–18

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Algebraic graph transformations with inheritance 

and abstraction

Michael Löwe, Harald König, Christoph Schulz ∗, Marius Schultchen

FHDW Hannover University of Applied Sciences, Freundallee 15, 30173 Hannover, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 May 2014
Received in revised form 7 February 2015
Accepted 10 February 2015
Available online 24 February 2015

Keywords:
Graph transformation
Inheritance
Abstraction
Adhesive HLR category

In this paper, we propose a new approach to inheritance and abstraction in the context of 
algebraic graph transformation by providing a suitable categorial framework which reflects 
the semantics of class-based inheritance in software engineering. Inheritance is modelled 
by a type graph T that comes equipped with a partial order. Typed graphs are arrows 
with codomain T which preserve graph structures up to inheritance. Morphisms between 
typed graphs are “down typing” graph morphisms: An object of class t can be mapped 
to an object of a subclass of t. Abstract classes are modelled by a subset of vertices of 
the type graph. We prove that this structure is an adhesive HLR category, i.e. pushouts 
along extremal monomorphisms are “well-behaved”. This infers validity of classical results 
such as the Local Church–Rosser Theorem, the Parallelism Theorem, and the Concurrency 
Theorem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and related work

1.1. Modelling object-oriented systems

Developing appropriate models to mimic reality has always been an important part of software engineering. However, the 
relation between coding and modelling has changed over time. Today, model-driven engineering focuses on generating code 
from appropriately detailed and formalised models, hoping that developing the model and using a mature and well-tested 
code generator is less error-prone than letting programmers write most of the code themselves. This reasoning, however, 
is only valid if model development is relatively easy. Typically, different graphical notations help people to structure the 
problem in various ways. Consequently, graphs or graph structures play an important role in software engineering today, 
compare e.g. the UML [1], a language which is currently the de facto standard for modelling object-oriented systems.

If one looks more closely at object-oriented systems, which consist of a type level with classes, associations, etc. accessi-
ble at design time and an instance level with objects, links, etc. at run-time, one realises that it is impossible to analyse or 
build object-oriented software in an efficient way without making use of specialisation or inheritance.1 Inheritance allows 
us to factor out common data and behaviour into separate classes which can be documented and tested separately. By dif-
ferentiating between classes providing an interface (only) and classes implementing that interface, a separation between 

* Corresponding author.
E-mail addresses: Michael.Loewe@fhdw.de (M. Löwe), Harald.Koenig@fhdw.de (H. König), Christoph.Schulz@fhdw.de (C. Schulz), 

Marius.Schultchen@web.de (M. Schultchen).
1 In this paper, we do not differentiate between interface inheritance (specialisation or subtyping) and implementation inheritance (class inheritance 

of subclassing), because the differences are mostly relevant in the context of type theory, which we do not discuss, and because most mainstream OOP 
languages do not differentiate between these concepts; even in Java, subclassing always implies subtyping.

http://dx.doi.org/10.1016/j.scico.2015.02.004
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:Michael.Loewe@fhdw.de
mailto:Harald.Koenig@fhdw.de
mailto:Christoph.Schulz@fhdw.de
mailto:Marius.Schultchen@web.de
http://dx.doi.org/10.1016/j.scico.2015.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.02.004&domain=pdf


M. Löwe et al. / Science of Computer Programming 107–108 (2015) 2–18 3

LR K R R R

(1) (2)

G I D I H I

m

l

k

r

n

f g

Fig. 1. Double-pushout transformation according to [4].

interface and implementation can be made explicit. Moreover, it allows to extend existing behaviour in a non-intruding 
way, which is sometimes called the “Open–Closed Principle”. When inheritance is applied top–down, it enables the use 
of subtype polymorphism and makes parallel development against common interfaces possible. When applied bottom-up, 
it permits refactoring and the cleanup of interfaces and code. All in all, inheritance is one of the most important features of 
the object-oriented paradigm [2,3].

In addition, the notion of abstraction allows to define abstract data types (ADT), which have to be specialised for concrete 
use cases. It is a natural consequence of the inheritance feature to be able to make the difference between abstract and 
concrete classes. Abstract classes are “unfinished” and need to be completed by subclasses. So no instances of abstract 
classes are desirable as such objects would not be able to understand and react to the complete set of messages their 
interface allows. In contrast, concrete classes guarantee that their instances are fully functional. In an object-oriented system, 
all objects are instances of concrete classes. When transforming such systems (see below), it is highly desirable that this 
property be preserved.

It should also be stressed that (interface) inheritance typically requires multiple inheritance, i.e., that a type not only 
inherits from a single type but from a whole set of other types. This enables designers to formulate the key idea that a class 
implements behaviour specified by many types (interface inheritance) or extends the behaviour and/or state implemented 
by many classes (implementation inheritance). If multiple inheritance were not supported, the designer would be forced to 
create fat interfaces2 or to introduce complicated delegation patterns, which considerably defeats the goal of building an 
object-oriented system from small and coherent parts.

It follows that it is sensible to require that the graphical notation directly support aspects of inheritance and abstraction, 
without being forced to transform them to lower-level constructs. Keeping the models at a high level of abstraction helps 
in understanding what they are about and how they change. Lowering the abstraction level of the model necessarily leads 
to constructs that are more difficult to read and understand. Additionally, if such a lower-level model is transformed (see 
below), the resulting model somehow has to be translated back to a high-level representation, which may be difficult or 
even impossible in some cases.3

1.2. Graph transformations

On the one side, graphs are well suited for modelling static aspects of software, e.g. the class and inheritance structure. 
On the other side, behavioural aspects of the system, e.g. state changes, can be modelled using graph transformations which 
formally describe when and how a graph (here: state of an object-oriented system) can change into another graph (here: 
another system state). Typically, such a transformation is modelled either by a graph transformation rule L l← K

r→ R with 
source graph L, target graph R , and total graph morphisms l and r, as it is done in the double-pushout approach (DPO, [4]), 
or as a single partial graph morphism L r→ R , as it is done in the single-pushout approach (SPO, [5]). In Fig. 1 you can see 
an example of the double-pushout approach where the graph transformation rule is defined at the top and the graph to be 
transformed is found at the bottom; a matching relation then defines which parts of the graph the rule shall apply to. Both 
squares are so-called pushout squares. In the rule, l specifies which graph elements are to be deleted (namely those which 
are not in the image of l), whereas r determines which graph elements are to be added (namely those which are not in the 
image of r). When G I gets transformed along l and r, the effects of l and r on LR are mirrored on G I , namely on the part of 
G I which is reached by m. So f and g do the same on m(LR ) in the context of G I as l and r do on LR .

In this paper, we concentrate on the double-pushout approach as depicted in Fig. 1. To be able to apply the double-
pushout approach to a system that does not consist of standard graphs and standard graph homomorphisms only, as e.g.
typed graphs, we need to ensure that the category we define is an adhesive HLR category. Adhesive high-level replace-
ment (HLR) categories as introduced in [6,4] combine high-level replacement systems [7] with the notion of adhesive 
categories [8] in order to be able to generalise the double-pushout transformation approach from graphs to other high-
level structures, as e.g. attributed graphs [9] and Petri nets using a categorial framework. Generally, adhesiveness abstracts 
from exactness properties like compatibility of union and intersection of sets. Due to special properties that guarantee the 
preservation of pushouts and pullbacks in certain situations, many useful results of the theory of graph transformation can 
be obtained, for example the Local Church–Rosser Theorem for pairwise analysis of sequential and parallel independence 
[4, Theorem 5.12], the Parallelism Theorem for applying independent rules and transformations in parallel [4, Theorem 5.18], 
or the Concurrency Theorem for applying E-related dependent rules simultaneously [4, Theorem 5.23]. Algebraic graph trans-

2 A fat interface is an interface with many operations.
3 The second case may happen if the transformation does not preserve some of the properties required by the higher-level models.



Download English Version:

https://daneshyari.com/en/article/433214

Download Persian Version:

https://daneshyari.com/article/433214

Daneshyari.com

https://daneshyari.com/en/article/433214
https://daneshyari.com/article/433214
https://daneshyari.com

