
Science of Computer Programming 105 (2015) 73–91

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Usage contracts: Offering immediate feedback on violations 

of structural source-code regularities

Angela Lozano a, Kim Mens a,∗, Andy Kellens b

a Université catholique de Louvain, ICTEAM, Belgium
b Vrije Universiteit Brussel, Software Languages Lab, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 August 2012
Received in revised form 28 August 2014
Accepted 19 January 2015
Available online 20 March 2015

Keywords:
Software development tool support
Structural regularities
Source code analysis
Internal domain-specific language
IDE integration

Developers often encode design knowledge through structural regularities such as API 
usage protocols, coding idioms and naming conventions. As these regularities express how 
the source code should be structured, they provide vital information for developers using 
or extending that code. Adherence to such regularities tends to deteriorate over time 
because they are not documented and checked explicitly. This paper introduces uContracts, 
an internal DSL to codify and verify such regularities as ‘usage contracts’. Our DSL aims 
at covering most common usage regularities, while still providing a means to express 
less common ones. Common regularities are identified based on regularities supported 
by existing approaches to detect bugs or suggest missing code fragments, techniques that 
mine for structural regularities, as well as on the analysis of an open-source project. We 
validate our DSL by documenting the structural regularities of an industrial case study, 
and analyse how useful the information provided by checking these regularities is for the 
developers of that case study.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Being able to document and preserve architectural integrity and design knowledge of an application is important to 
increase its longevity [3]. Given that over time the actual implementation structure tends to drift away from initial archi-
tecture and design documents, programmers turn to structural source code regularities, such as naming conventions, coding 
idioms and usage protocols to embed design knowledge in the implementation. Complying with these structural regular-
ities facilitates future changes as they convey coding and design assumptions that need to be respected for the program 
to remain well designed and correct. In practice however, these regularities often get violated simply because they are not 
encoded or checked explicitly. Systematic violation of structural regularities can lead to several problems, such as premature 
aging of the application or the introduction of defects. Matsumura et al. [29] report on a study in which they found that 
32.7% of all bugs in a legacy system were caused by violations of implicit structural regularities.

In this paper we present uContracts, a tool for declaring structural source-code regularities (like API usage idioms and 
coding conventions) in a concise, explicit and verifiable way. The tool is conceived as a domain-specific language (DSL), 
embedded in the host language and IDE. The proposed DSL allows us to define low-level coding and implementation regu-
larities, in terms of which higher-level regularities related to architecture, design or framework structure can be expressed. 

* Corresponding author.
E-mail addresses: angela.lozano@uclouvain.be (A. Lozano), kim.mens@uclouvain.be (K. Mens), andy.kellens@vub.ac.be (A. Kellens).

http://dx.doi.org/10.1016/j.scico.2015.01.004
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:angela.lozano@uclouvain.be
mailto:kim.mens@uclouvain.be
mailto:andy.kellens@vub.ac.be
http://dx.doi.org/10.1016/j.scico.2015.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.01.004&domain=pdf


74 A. Lozano et al. / Science of Computer Programming 105 (2015) 73–91

Fig. 1. A usage contract, depicted as a contract between a provider and a consumer.

We use the generic term structural source-code regularity for any of the patterns that can be described in our DSL, since the 
DSL is not limited to expressing architectural, design or framework patterns, but can also express more low-level coding 
idioms.

Our uContracts DSL was prototyped1 in the Pharo Smalltalk development environment, because of Smalltalk’s facilities 
for prototyping such tools. Nevertheless, the idea behind the tool remains essentially independent of the language and will 
therefore be presented as such in the paper.

As illustrated schematically in Fig. 1, in the uContracts DSL, structural regularities are expressed as usage contracts be-
tween two parties: a provider, i.e. the code entities that will be (re)used, and a consumer, i.e. the code entities that will use or 
extend the (re)used entities. A usage contract defines the expectations of and assumptions made by the reusable entities on 
the entities that reuse it. Consider for example an application or framework implementing some graphical editors. To main-
tain a consistent behavior among the classes implementing these editors, they should respect a variety of implementation 
guidelines such as: extending the default editor instead of the abstract editor, complying with certain naming conventions, 
being labeled with appropriate annotations, implementing the command pattern (i.e., providing an isUndoable method, 
and an undo method when necessary, and following a certain implementation template), etc. It is possible to define a 
usage contract that describes such regularities and to verify that the classes that implement such editors comply with these 
regularities.

The idea and terminology of declaring the assumptions that reusing code can make about the code it reuses as a contract
between two parties, is loosely inspired by our previous work on reuse contracts [41]. The underlying approach is different 
however. The main purpose of the internal DSL presented in the current paper is to offer developers the necessary primitives 
– similar to what unit testing frameworks do – to express structural code regularities in a straightforward way, while 
remaining as close as possible to the syntax of the host language. Embracing the Pareto principle (a.k.a. the 80–20 rule), 
rather than offering a full language that allows us to express any possible regularity, we offer a simple and reduced set 
of language constructs that is sufficiently powerful to support a majority of frequently occurring structural regularities. 
Our DSL is complemented with tool support that, after each change to the source code, verifies automatically whether the 
source code still respects the encoded structural regularities and that provides fine-grained feedback regarding potential 
violations.

Our motivation for proposing an internal DSL to express structural regularities stems from our prior experience with de-
veloping and using an external DSL for that purpose. More specifically, in our earlier work on SOUL [8,32] and the IntensiVE 
tool suite [4,31,33] we explored how to express structural regularities in a declarative program query language on top of an 
object-oriented host language. In spite of the good symbiosis of the declarative language and supporting toolsuite with the 
underlying language and its IDE, the fact that developers had to learn a new declarative language in which to express their 
regularities, turned out to be a major inhibitor towards adoption. This prior experience also taught us that, while having a 
Turing-complete specification language allowed for great flexibility, in practice describing most regularities required only the 
use of a small subset of the features of our language. We thus decided to develop instead a more lightweight and limited 
language as an internal DSL, in order for the developer to remain in his comfort zone when encoding these regularities.

The current paper introduces this DSL and presents the following contributions:

• The definition of the uContracts DSL for defining usage contracts that capture the structural regularities governing a 
software system;

• An argumentation that the uContracts DSL covers many common regularities, based on a thorough analysis of different 
kinds of commonly occurring regularities, a literature study and an investigation of the JHotDraw system;

• Prototype tool support in terms of an integration with the Smalltalk language and Pharo IDE;
• A first industrial case study to assess the usefulness of declaring and checking structural regularities by means of usage 

contracts.

1 http :/ /www.squeaksource .com /eContracts .html.

http://www.squeaksource.com/eContracts.html


Download English Version:

https://daneshyari.com/en/article/433227

Download Persian Version:

https://daneshyari.com/article/433227

Daneshyari.com

https://daneshyari.com/en/article/433227
https://daneshyari.com/article/433227
https://daneshyari.com

