
Science of Computer Programming 105 (2015) 124–144

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Computing end-to-end delays in stream query processing

Vasvi Kakkad ∗, Andrew E. Santosa, Alan Fekete, Bernhard Scholz

School of Information Technologies, The University of Sydney, NSW 2006, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2013
Received in revised form 5 March 2015
Accepted 7 April 2015
Available online 20 April 2015

Keywords:
Stream data processing
Distributed environment
End-to-end delay

Real-time data processing is essential in many stream-based applications including disaster 
area monitoring, health monitoring, and intrusion detection. In this work, we propose an 
approach that measures time delays in stream query processing. We represent a stream 
query as a graph consisting of operators that process data and channels that transport 
data tokens between operators. Our model establishes a causality relationship between 
consumed and produced data tokens at each operator and their corresponding occurrence 
times. The total time taken for the computation from the input to the output of a query, 
i.e., end-to-end delay, is computed by the causality relationships and periodic schedules for 
stream queries. Experiments are conducted to validate the proposed technique.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The rapid advancement in wireless sensor networks (WSNs) enable the development of complex applications such as 
health monitoring [1], disaster area monitoring [2], and intrusion detection [3]. In such applications, concerned health and 
environmental data is captured using a multitude of sensors such as temperature, pressure, and motion readings. A wide 
range of sensors are deployed at distant locations to collect a stream of data like temperature rise near disaster-prone area 
and intrusion at highly secured locations. The data collected at sensors could be numerical, digital or discrete and to extract 
complex information, the sensed data need to be filtered, transformed, and merged. Some of the existing systems including 
Aurora [4], Medusa [5], Borealis [6], Mad-WiSe [7], and Curracurrong [8] express WSN queries with stream data processing. 
The aforementioned existing systems emphasise on providing energy-efficiency and flexibility in WSN applications. However, 
apart from those features, it is important that sensed data reaches the base station reliably and timely for time-critical 
applications such as health and disaster area monitoring. The ad-hoc infrastructure and resource constraints in WSN increase 
the uncertainty of successful and real-time data transmission. Approaches to overcome such challenges in WSN have been 
studied for a decade [9]. Recent works have analysed the end-to-end timeliness in terms of probability distribution [10,11], 
and first-order statistics [12]. For unreliable networks, work on real-time queueing theory provides stochastic models [13]. 
Our goal is to provide a comprehensive approach for determining delays in stream query processing using event causality 
concepts. In this article, based on event causality we introduce the notion of timeliness into the semantics for stream 
processing and an algorithm to measure end-to-end delay that in the processing.

Consider a disaster area monitoring application in the Curracurrong system [8], which deploys several proximate sensors 
and measures temperature change. The query collects the average temperature reading from the sensors placed at distant 
locations and checks whether the reading goes beyond a certain threshold. Fig. 1(a) shows a stream graph for Curracur-
rong query of the given application, where the result is recorded at the base station. The stream graph is composed of: 
two sense operations Sense-1 and Sense-2; two filters Average-1 and Average-2 to compute average temperature

* Corresponding author.
E-mail address: vasvibhatt@gmail.com (V. Kakkad).

http://dx.doi.org/10.1016/j.scico.2015.04.003
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:vasvibhatt@gmail.com
http://dx.doi.org/10.1016/j.scico.2015.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.04.003&domain=pdf


V. Kakkad et al. / Science of Computer Programming 105 (2015) 124–144 125

Fig. 1. Stream graph and event causality with synchronised sensors.

from Sense-1 and Sense-2, respectively; a join operation Join to merge data from two filters; a filter Threshold
that checks whether the average temperature readings are above threshold; and a Sink operator, where the final data is 
recorded. All operators are connected with uni-directional communication channels.

In the example, sensor nodes are deployed at distant locations and operators are placed in the intermediate sensor 
nodes before the data reach the sink (at the base station). It is important that temperature-related data collected at sensors 
reach the sink on time so that the user can take required action. Determining the freshness of the data relies on knowing 
how long it takes to propagate data from a sensor to the sink. Various operations on the sensed data insert certain delays 
in information generation at the sink (Fig. 1(b)). The figure shows that both sensors, represented as s1 and s2, generate 
data with uniform frequency and propagate the sensed data to consecutive operators until they reach the sink operator. 
During data propagation, the intermediate operators, such as average and threshold, consume more than one data token and 
take time for computation, both of which ultimately result in delay. Sense operators continuously generate data at every 
second and propagate them to averaging operators. Filter Average-1, represented as a1, has window size 3, and therefore 
waits 3 s for data availability and computes the average, adding a few milliseconds delay. Likewise, filter Average-2, 
represented as a2, waits for 6 s and inserts a few milliseconds delay during computation. The Join operator merges the 
data from two average filters and forwards them to Threshold (t) without any delay. The Threshold operator inserts a 
few milliseconds delay before the data token finally reaches the sink, k. The first data token generated at the sense reaches 
the sink with 2.5 s delay. The delays are not the same for each token reaching the sink, for two reasons: the different data 
rates of each operator; and sensor periodicity. The challenge is thus how to compute precise end-to-end delays in a stream 
graph, as shown in Fig. 1(b).

We used compositional stream graphs to establish a causality relationship for tokens and a notion of a time steady state 
to compute end-to-end delays of stream queries. Our approach was built on top of Curracurrong framework [8]. In summary, 
the paper makes three contributions:

1. a denotational semantics for stream data processing that explains time information propagation,
2. an algorithm to measure the end-to-end delays in a stream graph, and
3. an experimental evaluation to show the efficiency and effectiveness of our approach in determining end-to-end delays.

The remainder of the paper is organised as follows. Section 2 defines our model and formally describes problem defi-
nition statement. Section 3 defines compositional stream graphs and semantics. Section 4 shows an algorithm and defines 
abstraction of concrete semantics to determine delays. We present experimental evaluations that confirm the efficacy of our 
approach, together with periodicity scaling in Section 5. In Section 6 we survey the related work and conclude this article 
in Section 7.

2. System model and problem definition

As in the data flow model [14], we represent a WSN query as a stream graph G = (V , E), whose vertices V are called 
operators and whose edges E ⊆ V × V are called channels. The source of an edge (u, v), denoted by src(u, v), is u and the 



Download English Version:

https://daneshyari.com/en/article/433229

Download Persian Version:

https://daneshyari.com/article/433229

Daneshyari.com

https://daneshyari.com/en/article/433229
https://daneshyari.com/article/433229
https://daneshyari.com

