
Science of Computer Programming 105 (2015) 145–170

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Systematic derivation of correct variability-aware program 

analyses ✩

Jan Midtgaard a,1, Aleksandar S. Dimovski b, Claus Brabrand b,∗, 
Andrzej Wąsowski b

a DTU Compute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
b IT University of Copenhagen, 2300 Copenhagen S, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2014
Received in revised form 13 April 2015
Accepted 14 April 2015
Available online 27 April 2015

Keywords:
Software Product Lines
Software variability
Verification
Static analysis
Abstract interpretation

A recent line of work lifts particular verification and analysis methods to Software 
Product Lines (SPL). In an effort to generalize such case-by-case approaches, we develop 
a systematic methodology for lifting single-program analyses to SPLs using abstract 
interpretation. Abstract interpretation is a classical framework for deriving static analyses 
in a compositional, step-by-step manner. We show how to take an analysis expressed as 
an abstract interpretation and lift each of the abstract interpretation steps to a family 
of programs (SPL). This includes schemes for lifting domain types, and combinators for 
lifting analyses and Galois connections. We prove that for analyses developed using our 
method, the soundness of lifting follows by construction. The resulting variational abstract 
interpretation is a conceptual framework for understanding, deriving, and validating static 
analyses for SPLs. Then we show how to derive the corresponding variational dataflow 
equations for an example static analysis, a constant propagation analysis. We also describe 
how to approximate variability by applying variability-aware abstractions to SPL analysis. 
Finally, we discuss how to efficiently implement our method and present some evaluation 
results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The methodology of Software Product Lines (SPLs) [1] enables systematic development of a family of related programs, 
known as variants, from a common code base by maximizing reuse in order to decrease development cost and time-to-
market. Each variant in an SPL is specified in terms of features selected for that particular variant. The SPL method has 
grown in popularity over the last 20 years, especially in the domain of embedded systems, including safety critical systems 
with stringent quality requirements on produced code.

While program families can be implemented using domain-specific languages and general-purpose model transforma-
tion [2], often it is possible to use simpler methods that are more easily amenable to testing and analysis. The most 
popular [3] implementation method in practice relies on a simple form of two-staged computation in preprocessor style: 
the programming language used (often C) is enriched with the ability to express simple compile-time computations (often 

✩ Supported by The Danish Council for Independent Research (grant no. 0602-02327B) under the Sapere Aude scheme, project VARIETE.

* Corresponding author.
E-mail address: brabrand@itu.dk (C. Brabrand).

1 A major part of this work was carried out while the author was at Dept. of Computer Science, Aarhus University, 8200 Aarhus N, Denmark.

http://dx.doi.org/10.1016/j.scico.2015.04.005
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.04.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:brabrand@itu.dk
http://dx.doi.org/10.1016/j.scico.2015.04.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.04.005&domain=pdf


146 J. Midtgaard et al. / Science of Computer Programming 105 (2015) 145–170

C preprocessor), e.g., it can be enriched with ‘#if A’ statements in which A represents a feature. At build-time, the source 
code is first configured, a variant describing a particular product is derived by selecting a set of features relevant for it, and 
only then is this variant compiled or interpreted.

In this two-stage process the compiler handles only the second stage artifacts—the code of the actual product variant. 
Consequently, all its static analysis mechanisms (such as type checking, data and control-flow analyses) do not analyze 
the entire program source code, but only the variant specialized for a particular product. This is entirely unacceptable for 
analyses that aim at identifying program errors. Often, it is not feasible for the vendor shipping the code to analyze each 
of the variants separately, due to a combinatorial explosion of the number of products (variants). For example, if variability 
is used to provide personalization of software for various users, it suffices to have 33 independent features to yield more 
configurations than people on the planet (233). As little as 320 optional features yield more configurations than the number 
of atoms in the universe. Now, we have the Linux kernel code base with more than 11,000 features [4]. The problem is 
particularly burning when run-time errors remain disguised because exhaustive analysis is not possible [5].

In the last decade, many existing program analysis and verification techniques have been lifted to work on program 
families leading to the emergence of so-called family-based or variability-aware analyses [6]. The main advantage of these 
analyses is that they do not work in two stages, i.e. they do not generate and analyze individual variants separately, but 
directly analyze the entire code base—all configuration variants at once—at a cost much lower than the accumulated cost of 
analyzing each of the product variants separately.

Unfortunately, along with the growth of the collection of available lifted analysis methods, a more fundamental worry 
became increasingly clear: does the variability challenge require redevelopment of the entire language and compiler en-
gineering theory? In response, the industry initiated standardization efforts to codify common understanding of what 
variability in languages is (for example [7]). In research, a number of papers have started to appear that tackle the more 
fundamental question of “what is variability in a programming language?” [8]. As part of this larger effort, we attack the 
problem by developing a systematic understanding of (1) how a single-program analysis relates to the lifted family-based 
analysis, (2) how programming language definitions (including semantics) are enriched with variability and (3) how a pro-
gram analysis developed formally for a single program can be systematically lifted into a correct analysis for a family of 
programs.

We develop a systematic methodology for lifting single-program analyses using abstract interpretation [9]. Abstract inter-
pretation is a unifying theory of sound abstraction and approximation of structures; a well established general framework, 
which can express many analyses (including data-flow analyses [9], control-flow analyses [10], model checking [11,12], and 
type checking [13]). Our method exploits knowledge about a single-program analysis to obtain a family-based analysis. The 
family-based analyses derived using this method are not only sound, but also formally and intimately related to their single 
program origins. The method is applicable to any analysis expressible as an abstract interpretation, but our focus here is on 
the constant propagation analysis. The following contributions are made:

(C1) A systematic method for compositional derivation of family-based analyses based on abstract interpretation.
(C2) The correctness (soundness) of the obtained family-based analyses follows by construction.
(C3) Understanding of the structure of the space of family-based analyses (how single-program analyses induce family-based 

analyses, and which of their abstraction components can be reused at the family level).
(C4) Understanding of individual family-based analyses (in particular, precisely where analysis precision is lost).
(C5) Transfer of the usual benefits of abstract interpretation to family-based analyses (for example, techniques for trading 

precision for speed and methods for proving analyses to be semantically sound).
(C6) A step-by-step example-driven demonstration of how to derive a family-based analysis.

This work represents an extended and revised version of [14]. Compared to the earlier work, we provide formal and care-
fully explained proofs of all theorems. We use a running example throughout the paper in order to clarify and improve the 
presentation of the proposed method and the introduced concepts. In addition, we discuss on an efficient implementation 
of this method and support our claims by some practical results.

The work is organized as follows. First, a simple imperative language and its operational semantics are presented in 
Section 2. Then in Section 3, we present a systematic derivation of constant propagation analysis for this language, which 
is based on the calculational approach to abstract interpretation [15]. In Section 4, we show how the entire derivation 
process and result can be lifted to the family level for analyzing Software Product Lines. An alternative way to derive lifted 
analyses of family programs is described in Section 5. We then discuss how the proposed lifted analyses can be efficiently 
implemented in Section 6. In the end, we discuss related work, and conclude by presenting some ideas for future work.

2. A programming language

We begin by defining the programming language that we want to analyze. Then, we present its operational semantics as 
we aim to develop a provably sound analysis. Finally, we introduce static variability into the language, and into its formal 
semantics.



Download English Version:

https://daneshyari.com/en/article/433230

Download Persian Version:

https://daneshyari.com/article/433230

Daneshyari.com

https://daneshyari.com/en/article/433230
https://daneshyari.com/article/433230
https://daneshyari.com

