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• First space analysis for a functional language with regions.
• Our bounds go beyond multivariate polynomials.
• Our bounds have the property of reductivity, i.e. they improve by iteration.
• We have formally proved the correctness of all the results and implemented all the algorithms.
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In a previous paper we presented an abstract interpretation-based static analysis for 
inferring heap and stack memory consumption in a functional language. The language, 
called Safe, is eager and first-order, and its memory management system is based on heap 
regions instead of the more conventional approach of having a garbage collector.
In this paper we concentrate on an important property of our analysis, namely that the 
inferred bounds are reductive under certain reasonable conditions. This means that by 
iterating the analysis using as input the prior inferred bound, we can get tighter and tighter 
bounds, all of them correct. In some cases, even the exact bound is obtained.
The paper includes several examples and case studies illustrating in detail the reductivity 
property of the inferred bounds.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a previous paper [13], we presented an abstract interpretation-based static analysis for inferring heap and stack 
memory consumption in a functional language. It describes the automatic analysis of memory bounds for a first-order 
functional language called Safe, which has been developed in the last few years as a research platform for analysing and 
formally certifying properties of programs with regard to memory usage. Memory consumption is especially relevant for 
instance when programming embedded devices. It is necessary to ensure that programs will not stop due to lack of memory. 
It is also useful to know in advance how much memory will be needed in order to reduce hardware and energy costs.

The first results on memory consumption analysis were targeted towards the functional programming paradigm. The de-
veloped techniques were subsequently adapted to mainstream languages, such as Java or C++. Hughes and Pareto introduce 
in [8] a first-order functional language with a type and effect system guaranteeing termination and execution in bounded 
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space. This system is a combination of Tofte and Talpin’s approach to regions and of sized types [9,19]. The first fully auto-
matic way to infer closed-form memory bounds is due to Hofmann and Jost [7]. Their analysis, based on a type system with 
resource annotations, can infer linear heap memory bounds on first-order functional programs with explicit deallocation. 
This approach is extended in [11,10] to higher-order programs. More recently, Hoffmann and Hofmann have extended their 
initial work [7] to polynomial memory bounds [6,5], and Simões et al. [20] have further extended it to lazy evaluation.

The COSTA system [2] follows a different approach, since it generates recurrence equations and provides its own recur-
rence relation solver, PUBS [1], which can handle multivariate, non-deterministic recurrence relations. COSTA is an abstract 
interpretation-based analyser which works at the level of Java bytecode, and supports several notions of cost, such as the 
number of executed bytecode instructions, heap consumption, and number of calls to a particular method.

In order to better compute memory bounds, we have decided Safe to have a heap structured as a region stack in which 
regions are allocated and deallocated in constant time. Given this memory model, we used in [13] abstract interpretation-
based techniques for inferring non-linear, monotonic, closed-form expressions bounding the heap and stack memory costs 
of a program. Safe’s type system [12] also supports polymorphic recursion on regions, meaning in essence that the recursive 
internal calls may use different regions than the external call. The language provides also a destructive pattern matching fea-
ture which allows the programmer to explicitly dispose data structures, or parts of them. Both features result in programs 
with less memory consumption. Due to technical difficulties, we have excluded them in this work, but we provide more 
comments on this in Section 5.

Since the memory needs of a program usually depend on its input, the bounds we obtain in our analysis are multivariate 
functions on the sizes of the inputs. Even if we restrict ourselves to a first-order functional language like Safe, the inference 
of safe memory bounds is a very complex task, which involves considering several preliminary results, such as size analysis, 
and call-tree size analysis. Each one of these analyses is by itself a subject of extensive research. In the analysis developed 
in [13] the size and call-tree information is given externally.

The full development of the analysis can be found in [16], which is an extended and improved version of [13]. We can 
summarise the original contributions of [13] as follows: (1) it infers space bounds for a functional language with lexically 
scoped regions; (2) it uses abstract interpretation directly on the infinite domain of multivariate monotonic functions; and 
(3) the bounds go beyond multivariate polynomials. The additional contributions of this paper are the following:

• Under certain mild conditions on the externally-given call-tree information, our bounds have the nice property of re-
ductivity. This means that if we use a correct bound as an input of the abstract interpretation, we get a new bound 
which is not only correct but also at least as tight.

• We have formally proved the correctness of all the results.
• We have implemented all the algorithms presented here in our Safe compiler.

The proofs of the theorems, including the statement and proof of some auxiliary lemmas, are included in [17].

1.1. Plan of the paper

After this introduction, in Section 2 we summarise Safe’s features, the abstract intepretation rules, and the space infer-
ence algorithms already presented in [13,16]. Then, Section 3 is devoted to the reductivity property. We specify and prove 
under which conditions this property holds. Detailed examples of reductivity are included here. Section 4 presents some 
medium-sized case studies and the results obtained for many other functions. Section 5 discusses how it is possible to 
extend these results when polymorphic recursion and explicit destruction are considered. Finally, Section 6 concludes.

2. Preliminaries

2.1. The Safe language

Safe is a first-order eager functional language with a Haskell-like syntax, but with a different approach to memory 
management. Instead of using a garbage collector, Safe’s heap memory model is based on a combination of regions and 
explicit destruction. The latter aspect is controlled by the programmer and it is not considered in this paper. However, in 
Section 5 we sketch the inference of memory consumption in presence of this feature.

A region is a part of the memory, disjoint from other regions, in which data structures are built. In this work, we define 
a data structure (DS in the following) as the set of cells that stem from a given one (the root cell) and have the same type. 
A cell is just a piece of memory containing a constructor and the arguments to which it is applied. A naive implementation 
of cells will assign a fixed number of bytes to all of them, but more clever implementations are possible [15]. We pose 
the restriction that a data structure must be contained within a single region. For instance, assume a list of lists of integer 
values, of type [[Int]]. The cons-nil spine of the outer list is a DS which may reside in a region different from those of the 
inner lists, each of which is a separate DS. The integer values of the inner lists do not belong to any region by themselves; 
they are contained within cells.

Regions are created and destroyed in a stack-like fashion. There is a correspondence between the function call stack and 
the region stack. The region associated with a function call to f is called its working region. An empty region is allocated 
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