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This article presents a semantics-based program verification framework for critical embed-
ded real-time systems using the worst-case execution time (WCET) as the safety parameter. 
The verification algorithm is designed to run on devices with limited computational re-
sources where efficient resource usage is a requirement. For this purpose, the framework 
of abstract-carrying code (ACC) is extended with an additional verification mechanism for 
linear programming (LP) by applying the certifying properties of duality theory to check the 
optimality of WCET estimates. Further, the WCET verification approach preserves feasibility 
and scalability when applied to multicore architectural models.
The certifying WCET algorithm is targeted to architectural models based on the ARM in-
struction set and is presented as a particular instantiation of a compositional data-flow 
framework supported on the theoretic foundations of denotational semantics and abstract 
interpretation. The data-flow framework has algebraic properties that provide algorithmic 
transformations to increase verification efficiency, mainly in terms of verification time. The 
WCET analysis/verification on multicore architectures applies the formalism of latency-rate
(LR) servers, and proves its correctness in the context of abstract interpretation, in order 
to ease WCET estimation of programs sharing resources.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The design of embedded real-time systems is, in general, guided by some timeliness criteria. Timeliness in embedded 
real-time systems means that programs have operational deadlines, i.e. strict run-time constraints, and that the system 
must guarantee such requirements to ensure safety. Timeliness evaluation is performed at hardware level and is defined as 
the system ability to assure that execution deadlines are met at all times. Therefore, when the risk of failure, in terms of 
system responsiveness, may endanger human life or substantial economic values [21], the determination of upper bounds 
for the execution times of programs becomes a safety requirement.

The timeliness safety criteria is most commonly specified by the worst-case execution time (WCET) [74]. This timing 
property is an over-approximation of the execution time of the path inside the program that takes the longest to execute. 
In general, the particular input data that causes the exact WCET is unknown at compile time. Therefore, the exclusive use 
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Fig. 1. Overview of the extended ACC certifying platform.

of measurement-based techniques to determine the WCET for any possible run of the program is not feasible in terms of 
computational cost (exception made, for example, to straight-line programs, for which input data never changes execution 
order). Alternative solutions use static analysis methods to guarantee sound estimates of the WCET in finite time [73]. 
Nonetheless, state of the art WCET tool suites like aiT [1] and Otawa [11] are conservative by nature and may require 
manual intervention in order to predict tight WCET estimates. Also, end-to-end measurement-based approaches can be 
combined with game-theoretic learning approaches using SMT solvers in order to generate predictable WCET estimates 
based on probabilistic guarantees [63].

In addition, embedded real-time systems often require incremental updates, where critical “patches” may be required af-
ter deployment [6]. Traditionally, this is done using manual and heavyweight processes, specifically dedicated to a particular 
modification. However, incremental updates of real-time systems can only be achieved if the system design abandons its 
traditional monolithic and closed conception. We propose a novel approach to an ideal scenario, where the WCET analysis 
is complemented with a verification mechanism, whose task is to verify whether the computed WCET estimate is compliant 
with safety requirements of an embedded real-time system.

State of the art WCET analyzers like aiT [1] make use of the theoretical foundations of abstract interpretation [19] com-
bined with linear programming [55]. Although such type of tool suites excel in computing tight and precise WCET estimates 
using real-world hardware models, they do not easily fit to the task of formal WCET verification. The reason is that, here, the 
focus needs to be put more on the search of highly efficient mechanisms for WCET checking. Although it is not our objective 
to reproduce the quality of state-of-the-art WCET analysis, we have designed a comprehensive WCET tool prototype,1 based 
on declarative programming, where the underlying concepts of abstract interpretation can be elegantly implemented [57]. 
The analysis is restricted to source-to-assembler code compiled for the ARM target architecture.

We perform a flow-sensitive, path-sensitive and context-sensitive timing analysis. Apart from the induction of abstract 
interpreters that perform value and cache static analysis based on state-of-the-art domains [57], in this article we focus on 
a new approach to pipeline analysis that can be parametrizable by the timing model of a generic processor. Sound upper 
bounds of execution time are computed as the combined result of a simultaneous value, cache and pipeline analysis. Along 
the lines of [1], estimates of the worst-case execution time of the program are computed a posteriori by a path analysis using 
linear optimization.

Despite the common use of complex hardware features to increase instruction throughput, most embedded systems have 
limited computing resources. Therefore, mechanisms for WCET verification face new challenges due to the design complex-
ity of WCET estimation. For this reason, the computational burden resulting from the integration of the complete WCET 
toolchain into the trusted computing base (TCB) of embedded systems with real-time constraints would be unacceptable. 
Well-known solutions that address this issue are Proof-Carrying Code (PCC) [50], Typed-Assembly Languages (TAL) [48] and 
Abstraction-Carrying Code (ACC) [9].

The main objective of this article is to present a verification mechanism that efficiently checks if a program satisfies a 
given safety specification in terms of WCET [60]. Along the lines of the previously mentioned approaches, we propose a 
lightweight and standalone method, which does not depend on a third-party certifying entity to monitor the transmission 
of one program through an “untrusted” communication channel. We extend the existent ACC framework with an efficient 
mechanism to check the solutions of the linear optimization problem. This mechanism is illustrated in Fig. 1 by the compo-
nent “LP Checker”.

The verification mechanism uses fixpoint theory [40] to check the least fixpoint solution of the static analyzer, com-
plemented with duality theory [47] applied to the simplex method [36]. The application of the verification mechanism to 
multicore architectures is based on the sound abstractions of the concrete timing model provided by the formal model of 
LR-servers [67].

1 Available at https://github.com/esmifro/wcetac.
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