
Science of Computer Programming 104 (2015) 2–43

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Co-evolving meta-models and their instance models: A formal 
approach based on graph transformation

Florian Mantz a,∗, Gabriele Taentzer b,a, Yngve Lamo a, Uwe Wolter c

a Department of Computer Engineering, Bergen University College, Norway
b Department of Mathematics and Informatics, Philipps-University of Marburg, Germany
c Department of Informatics, University of Bergen, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 July 2013
Received in revised form 4 January 2015
Accepted 6 January 2015
Available online 14 January 2015

Keywords:
Meta-model evolution
Model migration
Graph transformation

Model-driven engineering focuses on models as primary artifacts of the software develop-
ment process, which means programs are mainly generated by model-to-code transforma-
tions. In particular, modeling languages tailored to specific domains promise to increase 
the productivity of software developers and the quality of generated software. Modeling 
languages, however, evolve over time and therefore, existing models have to be migrated 
accordingly. The manual migration of models tends to be tedious and error-prone, therefore 
tools have been developed to (partly) automate this process. Nevertheless, the migration 
results may not always be well-defined.
In this article, we provide a formal framework for model migration which is independent 
of specific modeling approaches. We treat modeling languages, formalized by meta-
models, as well as models as graphs and consider their co-evolutions as coupled 
graph transformations. In the same line, we study the conditions under which model 
migrations are well-defined. Existing solutions to model migration are either handwritten
or default solutions that can hardly be customized. Here, we introduce a high-level 
specification approach, called model migration schemes, that supports automation and 
customization. Starting from a meta-model evolution rule, a default migration scheme can 
be automatically deduced and customized.

© 2015 Published by Elsevier B.V.

1. Introduction

Model-based, and particularly, model-driven software development considers models as primary artifacts of the software 
development process that have to be kept up-to-date throughout software evolution. Especially, in model-driven develop-
ment, domain-specific modeling languages (DSMLs) are developed to lift recurring engineering tasks to a higher abstraction 
level and to provide sufficient information for automatic code generation. Hence, application-specific knowledge is described 
by models using domain-specific languages. These models serve as an input for not only code generation, but also validation 
and testing. Therefore, DSMLs can be considered as means to increase productivity and quality of software.

To maintain such advantages, DSMLs must evolve according to changing requirements and in line with target domains. 
This implies that existing models need to be adapted according to language changes. Since modeling languages are usually 
defined by so-called meta-models, this means that meta-model evolutions must essentially be reflected by model migrations 

* Corresponding author.
E-mail addresses: fma@hib.no (F. Mantz), taentzer@informatik.uni-marburg.de (G. Taentzer), yla@hib.no (Y. Lamo), Uwe.Wolter@ii.uib.no (U. Wolter).

http://dx.doi.org/10.1016/j.scico.2015.01.002
0167-6423/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.scico.2015.01.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:fma@hib.no
mailto:taentzer@informatik.uni-marburg.de
mailto:yla@hib.no
mailto:Uwe.Wolter@ii.uib.no
http://dx.doi.org/10.1016/j.scico.2015.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.01.002&domain=pdf


F. Mantz et al. / Science of Computer Programming 104 (2015) 2–43 3

(see Fig. 1). This challenge has previously been addressed by (partial) automation of this tedious and error-prone process 
(see e.g. [1,2]).

Fig. 1. Meta-model evolution and model migration.

Current research focuses on popular modeling frameworks such as the Eclipse Modeling Framework [3] and tool de-
velopment. The conditions under which model migrations are well-defined have hardly been considered. Moreover, model 
migrations are typically programmed in a relatively low-level language. Here we explore an approach that raises the ab-
straction level of migration specifications allowing to specify them conveniently. In addition, migration definitions in this 
approach can be reused. Accordingly, the following requirements must be considered:

1. Migrated models must belong to the evolved modeling language. This property is usually called soundness. It subdivides 
into well-typedness and well-definedness w.r.t. language constraints. A migrated model is well-typed if all its elements are 
typed over the evolved meta-model. Moreover, all well-definedness rules of the evolved language have to be satisfied.

2. All models of the original modeling language can be migrated to the evolved language meaning that the migration is 
viable. This property is usually referred to as completeness.

3. Model migration should be specified on a high abstraction level. This means that a model migration is either automati-
cally deduced from its meta-model evolution or specified using a high-level language.

4. The specification of model migrations is reusable (see also [1]). In particular, equivalent migration steps are specified 
only once.

5. General strategies for model co-evolution are formulated independently of a specific meta-modeling approach.

To address these requirements, we choose a formal approach to model transformations that is independent of model 
representations. Graph transformations [4,5] are well-established means to formally underpin model transformations. More-
over, the theory of graph transformations has been lifted to high-level structures, not necessarily being graphs [4]. In the 
following, we present a formal approach to model co-evolution based on graph transformations.

1. In our formal approach, meta-model evolutions and migrations of their instance models are specified by coupled graph 
transformations. This formal setting allows us to study completeness of model migrations and well-typedness of migrated 
models. Moreover, well-definedness w.r.t. multiplicity constraints is (partly) considered.
In particular, we encode each meta-model evolution step by a graph transformation tti : MMi → MMi+1. A model 
migration step is defined as graph transformation step ti : Mi → Mi+1 being typed over tti , i.e. Mi is typed over MMi
and Mi+1 is typed over MMi+1 (see Fig. 2, black vertical edges denote typings).

Fig. 2. Co-evolution steps.

2. To specify model migrations on a high abstraction level and for having the possibility to reuse them, we introduce model 
migration schemes. They support the pattern-based definition of model migrations. Once a model migration scheme is 
specified, it can be applied automatically to instance models yielding well-typed migrated results. Migration schemes 
lift the abstraction level of migration specification since they focus on the definition of migration patterns. Pattern 
recognition and their synchronized replacement do not have to be specified but are defined by the approach. In this 
context, reuse has two dimensions: Migration schemes can be used for (1) different instance models and also (2) for 
migrating models of different meta-models being evolved by the same meta-model evolution rules.
To increase the level of automation, we show how default migration schemes can be derived from given meta-model 
evolution rules1 by identifying related model patterns reflecting meta-model evolution steps. Since default migration 
schemes do not always reflect the intended semantics of evolution steps, we allow well-defined customizations of mi-
gration schemes as well.

1 Which are defined manually or automatically.



Download English Version:

https://daneshyari.com/en/article/433239

Download Persian Version:

https://daneshyari.com/article/433239

Daneshyari.com

https://daneshyari.com/en/article/433239
https://daneshyari.com/article/433239
https://daneshyari.com

