
Science of Computer Programming 95 (2014) 344–358

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Dynamic program analysis—Reconciling developer
productivity and tool performance

Aibek Sarimbekov b,∗, Yudi Zheng b, Danilo Ansaloni b, Lubomír Bulej b,
Lukáš Marek a, Walter Binder b,∗, Petr Tůma a, Zhengwei Qi c

a Charles University, Czech Republic
b University of Lugano, Switzerland
c Shanghai Jiao Tong University, China

h i g h l i g h t s

• We have created the Domain-Specific Language for Instrumentation (DiSL).
• We assess whether DiSL boosts developer productivity.
• We perform a controlled experiment.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2014
Accepted 11 March 2014
Available online 8 April 2014

Keywords:
Dynamic program analysis
Bytecode instrumentation
Development productivity
Controlled experiment

Dynamic program analysis tools serve many important software engineering tasks such as
profiling, debugging, testing, program comprehension, and reverse engineering. Many dy-
namic analysis tools rely on program instrumentation and are implemented using low-level
instrumentation libraries, resulting in tedious and error-prone tool development. Target-
ing this issue, we have created the Domain-Specific Language for Instrumentation (DiSL),
which offers high-level programming abstractions especially designed for instrumentation-
based dynamic analysis. When designing DiSL, our goal was to boost the productivity of
tool developers targeting the Java Virtual Machine, without impairing the performance of
the resulting tools. In this paper we assess whether DiSL meets this goal. First, we per-
form a controlled experiment to measure tool development time and correctness of the
developed tools, comparing DiSL with a prevailing, state-of-the-art instrumentation library.
Second, we recast 10 open-source software engineering tools in DiSL and compare source
code metrics and performance with the original implementations. Our studies show that
DiSL significantly improves developer productivity, enables concise tool implementations,
and does not have any negative impact on tool performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the growing complexity of computer software, dynamic program analysis (DPA) has become an invaluable tool for
obtaining information about computer programs that is difficult to ascertain from the source code alone. Existing DPA tools
aid in a wide range of tasks, including profiling [1], debugging [2–4], and program comprehension [5,6].

* Corresponding authors.
E-mail addresses: aibek.sarimbekov@usi.ch (A. Sarimbekov), yudi.zheng@usi.ch (Y. Zheng), danilo.ansaloni@usi.ch (D. Ansaloni), lubomir.bulej@usi.ch

(L. Bulej), lukas.marek@d3s.mff.cuni.cz (L. Marek), walter.binder@usi.ch (W. Binder), petr.tuma@d3s.mff.cuni.cz (P. Tůma), qizhenwei@sjtu.edu.cn (Z. Qi).

http://dx.doi.org/10.1016/j.scico.2014.03.014
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.03.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:aibek.sarimbekov@usi.ch
mailto:yudi.zheng@usi.ch
mailto:danilo.ansaloni@usi.ch
mailto:lubomir.bulej@usi.ch
mailto:lukas.marek@d3s.mff.cuni.cz
mailto:walter.binder@usi.ch
mailto:petr.tuma@d3s.mff.cuni.cz
mailto:qizhenwei@sjtu.edu.cn
http://dx.doi.org/10.1016/j.scico.2014.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.03.014&domain=pdf


A. Sarimbekov et al. / Science of Computer Programming 95 (2014) 344–358 345

The implementation of a typical DPA tool usually comprises an analysis part and an instrumentation part. The analysis
part implements algorithms and data structures, and determines what points in the execution of the analyzed program must
be observed. The instrumentation part is responsible for inserting code into the analyzed program. The inserted code then
notifies the analysis part whenever the execution of the analyzed program reaches any of the points that must be observed.

There are many ways to instrument a program, but the focus of this paper is on Java bytecode manipulation. Since Java
bytecode is similar to machine code, manipulating it is considered difficult and is usually performed using libraries such as
BCEL [7], ASM [8], Soot [9], Shrike [10], or Javassist [11]. However, even with those libraries, writing the instrumentation
part of a DPA tool is error-prone and requires advanced expertise from the developers. Due to the low-level nature of the
Java bytecode, the resulting code is often verbose, complex, and difficult to maintain or to extend.

The complexity associated with manipulating Java bytecode can be sometimes avoided by using aspect-oriented program-
ming (AOP) [12] to implement the instrumentation part of a DPA tool. This is possible because AOP provides a high-level
abstraction over predefined points in program execution (join points) and allows inserting code (advice) at a declaratively
specified set of join points (pointcuts). Tools like the DJProf profiler [13], the RacerAJ data race detector [14], or the Senseo
Eclipse plugin for augmenting static source views with dynamic metrics [6], are examples of successful applications of this
approach.

AOP, however, is not a general solution to DPA needs—mainly because AOP was not primarily designed for DPA. AspectJ,
the de-facto standard AOP language for Java, only provides a limited selection of join point types and thus does not allow
inserting code at the boundaries of, e.g., basic blocks, loops, or individual bytecodes. Another important drawback is the
lack of support for custom static analysis at instrumentation time, which can be used, e.g., to precompute static information
accessible at runtime, or to select join points that need to be captured. An AOP-based DPA tool will usually perform such
tasks at runtime, which can significantly increase the overhead of the inserted code. This is further aggravated by the fact
that access to certain static and dynamic context information is not very efficient [15].

To leverage the syntactic conciseness of the pointcut-advice mechanism found in AOP without sacrificing the expres-
siveness and performance attainable by using the low-level bytecode manipulation libraries, we have previously presented
DiSL [16,17], an open-source framework that enables rapid development of efficient instrumentations for Java-based DPA
tools. DiSL achieves this by relying on AOP principles to raise the abstraction level (thus reducing the effort needed to
develop an instrumentation), while avoiding the DPA-related shortcomings of AOP languages (thus increasing the expres-
sive power and enabling instrumentations that perform as well as instrumentations developed using low-level bytecode
manipulation libraries).

Since DiSL is an AOP-inspired abstraction layer built on top of ASM, it is natural to question whether such a layer is
actually worth having. In previous work, we have followed the community practice of demonstrating the benefits of DiSL on
a case study, in which we recast the AOP-based instrumentation of Senseo [6] to DiSL and ASM and compared the source
code size and performance of the recast instrumentations to the original. While the results indicated that, compared to
ASM, DiSL indeed raised the abstraction level without impairing performance, the case study only covered a single DPA tool
and did not quantify the impact of the higher abstraction level on the development of DPA instrumentations. To the best of
our knowledge, no such quantification is present in the literature concerning instrumentation of Java programs.

The purpose of this paper, therefore, is to quantify the usefulness of DiSL when developing DPA instrumentations, and to
extend the evaluation to other tools. Specifically, we aim to address the following research questions:

RQ1 Does DiSL improve developer productivity in writing instrumentations for DPA?
RQ2 Do DiSL instrumentations perform as fast as their equivalents written using low-level libraries?

To answer the research questions, we conduct a controlled experiment to determine if the use of DiSL instead of ASM
increases developer productivity. We also perform an extensive evaluation of 10 existing open source DPA tools, in which we
reimplement their instrumentation parts using DiSL. We compare reimplemented and the original instrumentation parts of
those 10 DPA tools. With respect to RQ1, the controlled experiment provides evidence of increased developer productivity,
supported by the evidence of more concise expression of equivalent instrumentations obtained by comparing the sizes of the
original and DiSL-based instrumentations in terms of logical lines of code. Regarding RQ2, we compare the overhead of the
evaluated DPA tools on benchmarks from the DaCapo [18] suite using both the original and the DiSL-based instrumentation.

The paper makes the following scientific contributions:

1. We present a controlled experiment in which we measure how DiSL affects the time needed to implement bytecode
instrumentations and the correctness of the resulting instrumentations.

2. We present an evaluation of ten existing DPA tools, in which we recast their instrumentation parts in DiSL, and compare
the size and performance of the original and the recast instrumentations.

While the study on the controlled experiment was previously published [19], this paper contains unpublished material
on performance comparison of ten different DPA tools.

The remainder of the paper is structured as follows: Section 2 gives an overview of DiSL, focusing on key concepts
needed to make this paper self-contained. Section 3 provides a detailed description of the controlled experiment. Section 4



Download English Version:

https://daneshyari.com/en/article/433256

Download Persian Version:

https://daneshyari.com/article/433256

Daneshyari.com

https://daneshyari.com/en/article/433256
https://daneshyari.com/article/433256
https://daneshyari.com

