
Science of Computer Programming 94 (2014) 3–17

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Process-aware continuation management in web applications

Matthias Book a,∗, Marco Buss b,1, Volker Gruhn a

a paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen, Gerlingstr. 16, 45127 Essen, Germany
b OPITZ CONSULTING Deutschland GmbH, Tempelhofer Weg 64, 12437 Berlin, Germany

h i g h l i g h t s

• Continuations are used to cope with unforeseen user navigation in web applications.
• However, their management can incur significant memory overhead under heavy load.
• We present mechanisms for pruning continuation trees based on the dialog structure.
• This also prevents users from backtracking into completed transactions through the GUI.
• Depending on the structure of the dialogs, this enables significant memory savings.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 October 2012
Received in revised form 14 June 2013
Accepted 30 July 2013
Available online 16 August 2013

Keywords:
Web engineering
Navigation
Continuations

Web applications are subject to an interaction challenge not found in other user interfaces:
In addition to the widgets that web pages are built of, browsers provide further navigation
features such as the Back and Forward buttons that are beyond the developer’s control.
Continuations have been suggested as a means to cope with the arbitrary navigation
patterns that users may perform using these features. While an elegant solution in
theory, continuations can incur a significant memory load in practice, and may offer
more navigation options than business requirements mandate. We therefore propose a
dialog control logic that augments the continuation approach with strategies for automatic
elimination of continuations that will likely not be needed anymore, or whose invocation
shall be prevented due to business requirements. This way, we aim to realize the benefits
that continuations can provide to web applications, while ameliorating the drawbacks that
they exhibit in practice.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Web-based user interfaces have become highly popular front-ends for information systems that shall be available any-
where, anytime and on any device, since they allow the construction of ideal thin clients: Web browsers merely render
hypertext pages according to markup generated by the server-side presentation logic. Due to the stateless nature of the
Hypertext Transfer Protocol (HTTP) [1], the separation of server-side presentation logic and client-side rendering engines
goes so deep that all client requests would seem like unrelated events to the application server, if it did not implement
additional measures to establish the concept of user sessions spanning multiple request–response cycles.

The decoupling of hypertext markup generation and rendering would not be a problem if all possible ways of interacting
with the rendered user interface could be specified at the time it is generated, i.e. if users could only interact with a
web application through the widgets it provides on its pages. However, web browsers typically provide additional widgets

* Corresponding author.
E-mail addresses: matthias.book@paluno.uni-due.de (M. Book), marco.buss@opitz-consulting.com (M. Buss), volker.gruhn@paluno.uni-due.de (V. Gruhn).

1 Work performed at the University of Leipzig, Germany.

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.07.015

http://dx.doi.org/10.1016/j.scico.2013.07.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:matthias.book@paluno.uni-due.de
mailto:marco.buss@opitz-consulting.com
mailto:volker.gruhn@paluno.uni-due.de
http://dx.doi.org/10.1016/j.scico.2013.07.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.07.015&domain=pdf


4 M. Book et al. / Science of Computer Programming 94 (2014) 3–17

Fig. 1. Multiple window scenario.

outside the page that enable users to interact with the application on the level of their individual navigation sequence (i.e.
the series of requests that users issue while navigating an application). These extra-page widgets include a Back button
for re-issuing a previous request from the navigation history; a Forward button for re-issuing a later request from the
navigation history (if the user had backtracked in the history before); and a Reload button for re-issuing the request for the
currently displayed page. Most browsers have also adopted a feature for displaying the response to a particular request in
a new browser window (or tab), enabling users to follow two parallel navigation “threads” from that point on. While these
windows share the same session, cookies etc., they typically keep separate navigation histories, enabling users to move back
and forth in branched navigation sequences.

1.1. Dialog synchrony breaks

Since the extra-page navigation features were originally devised to support browsing of static hypertext documents,
they assume that a concept of state only exists on the client (in terms of the page it is currently displaying), while the
server is a stateless entity that can produce a meaningful response to any request at any time (by simply delivering a
document from its file system). In web applications, however, a stateful server is essential for realizing all but the most
trivial business logic. In this case, client and server constitute two separate state automata: The server’s automaton model
is a fixed implementation of business requirements governing which transitions are permissible from any given state. The
client’s automaton model, in contrast, is continually adapted to reflect the user’s navigation history, and allows (through the
browser’s extra-page navigation features) arbitrary transitions between all its states.

As long as the user triggers only state transitions that exist in the server’s automaton model (by using only intra-page
navigation features provided by the server), the client and server’s state will remain in synchrony. However, if the user
triggers a state transition that only exists in the client’s model (by using one of the extra-page navigation features provided
by the browser), the synchrony between the models can be broken. Re-establishing the synchrony of the client and server’s
dialog models can already be tricky, but much more serious is the undefined application behavior and corrupted data model
that may result from such unexpected and uncontrollable synchrony breaks [2].

As an example (Fig. 1), a travel portal may offer a user two flight options a and b for a given date (#1). To compare both,
the user may request the fare details for option a in a separate browser window (#2), and then request the fare details
for option b in the original browser window (#3). If the user then decides on the earlier-selected option a (#4), the server
may not realize on which page the confirmation was made, and erroneously book the later-selected option b (an actual bug
in a popular travel portal [3]). Furthermore, if the user would click the Back button to return from the fare details page to
the flight options page (#5), the browser would re-issue a search request that the server may not expect in its current state,
potentially leading to undefined reactions.

Since extra-page navigation operations are not uncommon (clicking the Back button, for example, has been consistently
found to be the most frequent mechanism used to revisit a previously displayed page [4,5]), they cannot be disregarded as
exotic cases that may be dealt with through some crude solution (e.g. an error message) that protects state integrity, but
ignores usability. Rather, we believe application developers should handle them as carefully as regular clicks on intra-page
links or buttons.

One might argue that the bugs described above could easily be fixed by coding the application logic in a way that does
not make assumptions about preceding pages, e.g. by adding an additional request parameter specifying the flight to be
confirmed on the fare details page. While this is true, it would require additional logic in several layers of the application that
is not motivated by business, but purely technical requirements: Instrumenting the page links with the flight ID, restoring
the associated flight data from the back-end, combining it with flight-unspecific data present in the session, etc. The need
to provide such individual logic in the application and presentation layer for every expected – and (due to backtracking
etc.) also unexpected – page transition may significantly complicate the design and implementation of web applications,
and provoke elusive errors.



Download English Version:

https://daneshyari.com/en/article/433288

Download Persian Version:

https://daneshyari.com/article/433288

Daneshyari.com

https://daneshyari.com/en/article/433288
https://daneshyari.com/article/433288
https://daneshyari.com

