
Science of Computer Programming 97 (2015) 11–16

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Understanding software through linguistic abstraction

Eelco Visser

Software Engineering Research Group, Department of Software and Computer Technology, Delft University of Technology, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2013
Accepted 3 December 2013
Available online 31 December 2013

Keywords:
Linguistic abstraction
Programming languages
Domain-specific languages
Software understanding

In this essay, I argue that linguistic abstraction should be used systematically as a tool to
capture our emerging understanding of domains of computation. Moreover, to enable that
systematic application, we need to capture our understanding of the domain of linguistic
abstraction itself in higher-level meta languages. The argument is illustrated with examples
from the SDF, Stratego, Spoofax, and WebDSL projects in which I explore these ideas.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software systems are the engines of modern information society. Our ability to cope with the increasing complexity
of software systems is limited by the programming languages we use to build them. Bridging the gap between domain
concepts and the implementation of these concepts in a programming language is one of the core challenges of software
engineering. Modern programming languages have considerably reduced this gap, but often still require low-level program-
matic encodings of domain concepts. Or as Alan Perlis formulated it in one of his famous epigrams [1]: “A programming
language is low level when its programs require attention to the irrelevant”. A fixed set of (Turing Complete) programming
constructs is sufficient to express all possible computations, but at the expense of considerable encoding that obfuscates
the concepts under consideration. This essay argues that linguistic abstraction should be used systematically as a tool to
capture our emerging understanding of domains of computation. Moreover, to enable that systematic application, we need
to capture our understanding of the domain of linguistic abstraction itself in higher-level meta languages. The argument is
illustrated with examples from the SDF, Stratego, Spoofax, and WebDSL projects in which I explore these ideas. A thorough
investigation of the literature on this topic is beyond the scope of this short essay.

2. From design patterns to linguistic abstractions

A design pattern describes an approach (or a family of approaches) to solve a reoccurring problem in software devel-
opment. A design pattern is a programming recipe that is applied manually by a programmer. When a design pattern is
understood well, we can recognize formalizable regularity in the problem pattern and its encodings. A linguistic abstraction
can then be used to formalize the design pattern in a language construct. To understand this process, let’s examine the
classical example of procedural abstraction.

E-mail address: visser@acm.org.
URL: http://eelcovisser.org.

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.12.001

http://dx.doi.org/10.1016/j.scico.2013.12.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:visser@acm.org
http://eelcovisser.org
http://dx.doi.org/10.1016/j.scico.2013.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.12.001&domain=pdf


12 E. Visser / Science of Computer Programming 97 (2015) 11–16

label P
pop r3
pop r2
pop r1
// instructions for P
jump r3 // return

push v1
push v2
push L
goto P
label L

Fig. 1. Encoding a procedure in an imaginary assembly language with labels, stack operations, and jumps. The procedure definition (top) pops arguments
from the stack and stores the values in registers. The procedure call (bottom) pushes arguments and the return address on the stack and jumps to the
procedure code.

2.1. Example: procedural abstraction

A procedure in assembly programming amounts to a design pattern for organizing reuse of code (Fig. 1). In its simplest
form, a sequence of instructions that is used at multiple places in the program is given a label. When jumping to the label
the address of the next instruction after the call is stored, so that the procedure knows where to continue after completion.
Passing arguments to a procedure requires storing the arguments on the stack and/or in registers. The particular protocol
for doing this depends on the definition of the procedure. In principle, each procedure may require a different protocol.
A calling convention standardizes the protocol for procedure calls in programs. However, a calling convention is a convention
and is not enforced; adherence requires programmer discipline. This means that it is possible to deviate and make errors.
Detecting such errors typically requires debugging rather than static analysis. Furthermore, calling conventions for different
platforms may differ, for example, in the order in which arguments are pushed on the stack. Such differences reduce the
portability of code.

Procedural abstraction is a linguistic abstraction that formalizes the design pattern of procedure definitions and calls.
A procedure is introduced with a procedure definition that is syntactically recognizable as such:

def P(x, y) {
// definition of P using parameters x and y
return; // return control to caller

}

The definition introduces the name of the procedure and the names (and possibly types) of the arguments. A procedure
call P(e1, e2) uses function notation known from mathematics to invoke a function, passing its arguments. Thus, the
semantic concept is reified in syntax, allowing developers to directly express design intent (‘language shapes thought’).

We might now consider procedural abstraction as providing syntactic sugar for a particular implementation of procedures
with jump and stack instructions. That particular implementation defines the semantics of procedures. However, we can go
further and define a more abstract semantics that captures the essence of procedures; the fact that they name a parameter-
ized sequence of instructions to which control is passed. Given that view, we can define mappings from the same notation
to multiple alternative implementation models. In particular, we can make translations to the instruction sets and calling
conventions of other platforms than the one that we originally developed the abstraction for, thus achieving portability of
programs. Since these translations are automated we can ensure that the generated code is correct by construction, i.e. fol-
lows the rules of the design pattern. Alternatively, we can define an interpreter for programs, instead of a translation to
a sequence of instructions.

In addition to varying implementation models, the abstraction makes it much easier to perform all sorts of static anal-
yses on the program. Instead of having to identify the pieces of code that make up procedure definitions and calls, that
information is now explicit at the syntactic level. For example, we can check that procedure calls are consistent in arity and
type of arguments with procedure definitions, ruling out a large source of errors with a simple static analysis, effectively
enforcing consistent application of the design pattern. Moreover, errors can be reported in the terminology of the abstraction
(‘procedure call has too few parameters’). In reasoning about the behavior of procedures in such analyses we only need to
consider their abstract semantics.

A linguistic abstraction such as procedural abstraction captures our understanding of a concept in software. Over time the
understanding of the abstraction in terms of the original implementation model erodes. New programmers learn to program
with procedures without ever learning the underlying implementation scheme (or the mathematical semantics for that
matter). The concept is no longer a convenience, but a first-class concept in thinking about software construction.



Download English Version:

https://daneshyari.com/en/article/433294

Download Persian Version:

https://daneshyari.com/article/433294

Daneshyari.com

https://daneshyari.com/en/article/433294
https://daneshyari.com/article/433294
https://daneshyari.com

