
Science of Computer Programming 97 (2015) 23–30

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Constraint design rewriting ✩

Roberto Bruni a, Alberto Lluch Lafuente b,∗, Ugo Montanari a

a Dipartimento di Informatica, Università di Pisa, Italy
b IMT Institute for Advanced Studies, Lucca, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 September 2013
Accepted 5 November 2013
Available online 13 November 2013

Keywords:
Constraints
Rewriting
Hierarchical graphs
Architectures

Constraint networks are hyper-graphs whose nodes and hyper-edges respectively represent
variables and relations between them. The problem to assign values to variables by
satisfying all constraints is NP-complete. We propose an algebraic approach to the design
and transformation of constraint networks, inspired by Architectural Design Rewriting (ADR).
The main idea is to exploit ADR to equip constraint networks with some hierarchical
structure and represent them as terms of a suitable algebra, when possible. Constraint
network transformations such as constraint propagations are then specified with efficient
rewrite rules exploiting the network’s structure provided by terms. The approach can be
understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to
the design of reconfigurable constraint networks.

© 2013 Elsevier B.V. All rights reserved.

It is a pleasure for all of us to contribute this piece of work in honor of Paul Klint. I always considered his role at CWI
as essential in providing an excellent software engineering counterpart to the other theoretical computer science compo-
nents of the Center. In my long research life I had the occasion of working also on software engineering issues, and I very
much appreciated Paul’s contributions to the field. Also, I consider EAPLS, which for some time I represented at ETAPS
Steering Committee, as an important achievement by Paul Klint. I found his message announcing EAPLS’ foundation:

On Dec 4, 1996, at 10:25 AM, Paul Klint wrote:

Dear EAPLS enthusiasts:

Following the EAPLS meeting in Aachen last September, EAPLS has now been officially founded!
The formal documents were signed last October 24, in Amsterdam.

[Ugo Montanari (Pisa, August 2013)]

1. Introduction

Constraint networks [1,2] are a very flexible and general formalism used to model and solve a wide variety of appli-
cations such as optimization problems, knowledge representation, and synchronization mechanisms, to mention a few [3].
Technically, constraint networks are hyper-graphs whose nodes and hyper-edges are respectively interpreted as variables and
relations constraining the assignment of values to the variables of their adjacent nodes. Typically, the hyper-graph represents
a system composed by several entities represented by hyper-edges that are inter-connected with each other by attaching

✩ Research supported by the European projects IP 257414 ASCENS and STReP 600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

* Corresponding author.
E-mail addresses: bruni@di.unipi.it (R. Bruni), alberto.lluch@imtlucca.it (A. Lluch Lafuente), ugo@di.unipi.it (U. Montanari).

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.015

http://dx.doi.org/10.1016/j.scico.2013.11.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:bruni@di.unipi.it
mailto:alberto.lluch@imtlucca.it
mailto:ugo@di.unipi.it
http://dx.doi.org/10.1016/j.scico.2013.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.015&domain=pdf


24 R. Bruni et al. / Science of Computer Programming 97 (2015) 23–30

their tentacles to shared nodes. Such entities may be, for instance, software artifacts such as software components within
an architecture or classes within a class diagram. The use of constraints has several practical uses. For instance, it allows
software artifacts to delay the actual choice of values associated to their connections (e.g. the actual choice of the bandwidth
to be allocated on a channel) and thus facilitate the development of open-ended systems made of loosely coupled artifacts
(e.g., autonomous or service-oriented systems) which may connect by reaching an agreement on the admissible values on
shared resources at run-time. As a matter of fact, the problem of finding all possible agreements is the most typical and
studied problem for networks of constraints, called Constraint Satisfaction Problem (CSP), which consists more precisely on
determining all the assignments of values to variables which satisfy all constraints. These problems are NP-complete, thus
they cannot be solved efficiently in general. Special cases allowing for feasible solutions have been sought actively in the
Artificial Intelligence field in the past forty years. Particularly useful is the perfect relaxation method [2], based on dynamic
programming. The idea is to find a derivation, namely a syntax tree, for the given network using a hyper-edge replacement
grammar whose productions are small (in terms both of the number of tentacles of the hyper-edge in their left members,
and in the size of the graphs in their right members). Then the solution to the original problem is decomposed into a se-
quence (or, rather, a tree) of smaller problems, one for every step in the derivation: considering the grammar rule used
in that step, the CSP problem for the graph in the right-hand side is solved and the resulting relation is assigned to the
hyper-edge in the left side, to be recursively employed in a bottom up fashion in the next step. This algorithm is linear
within the class of constraint networks whose underlying graph is generated by a (finite) hyper-edge replacement grammar.

Architectural Design Rewriting (ADR) [4] is a formal approach to the design of reconfigurable software systems. ADR
offers a formal setting where design development, run-time execution and reconfiguration aspects are defined on the same
footing. One of the main features of ADR is the ability to characterise a class of graphs satisfying certain spatial constraints
by means of a graph algebra. The flexibility of ADR is evidenced by its many applications to several aspects of software
engineering, including model driven transformations [5], architectural styles and reconfigurations [4,6,7], modelling of ser-
vice oriented systems [8,9], and graphical representation of process calculi [10]. As mentioned for the case of networks of
constraints, it is very often the case that hyper-edges represent software artifacts. The spatial constraints that ADR allows
one to specify and exploit consist then in the allowed topological ways of connecting those artifacts, typical cases being
metamodels and architectural styles.

In this paper we present some preliminary ideas on how to combine some techniques from ADR and from constraint
networks. Our proposal can be understood both as (i) an enrichment of ADR with non-spatial constraints, and (ii) an ap-
plication of the ADR methodology to the design and transformation of structured constraint networks. The main idea is to
model classes of constraint networks as algebras, whose operators can be used to denote constraint networks with terms.
Network transformations, like constraint propagation, are then specified by rewrite rules that exploit the structure provided
by terms.

One of the key issues is that ADR graphs can be hierarchical and, indeed, the ADR graph algebra [10] has primitive op-
erations to encapsulate a graph within a box with tentacles (a hyper-edge). The resulting structure is compositional in two
dimensions: (i) hyper-edges and nodes can be connected to obtain ordinary graphs using operators reminiscent of parallel
composition and restriction of process algebras; (ii) the encapsulation operation can conveniently model an abstraction/re-
finement step of the design. In particular, if a graph grammar based on hyper-edge replacement [11] is employed to define
an architectural style [12], an ADR graph is able to model not only a resulting (style-compliant) architecture, but also its
syntax tree, recording all refinement steps of the design process.

The ability to represent both a graph and its syntax tree is particularly relevant for constraint networks [1,2]. It is now
clear why ADR graphs are convenient for modelling networks of constraints: not only does the hierarchical structure record
the steps of the design process, but also the same structure is essential at run-time for efficiently checking the satisfiability
of the resulting global constraint. ADR also facilitates the seamless handling of network reconfiguration defined by structural
induction, a feature not considered in [13] and that is needed when the architectural style (i.e., the selected hyper-edge
replacement grammar) is changed at run-time. Also, when the more general case of Constraint Logic Programming (CLP) is
considered [13], and a satisfiability check is required at every step, the condition about the underlying graph being derivable
by a hyper-edge replacement grammar turns out to be automatically satisfied. The promotion of ADR for supporting the
design and evaluation of constraints is the main contribution of this paper.

Our approach combines Computer Science principles frequently used for the purpose of Understanding Software: namely
abstraction (as provided by the use of interfaces and hierarchies), compositionality (as provided by algebras and grammars),
structure (as provided by terms and graphs), visual representation (as provided by graphs), partial information (as provided by
constraints), and declarative specification (as provided by rewrite rules and constraints).

2. Constraint design rewriting

In this section we will first present an algebraic notation (Section 2.1) for networks of constraints [2]. Next (Section 2.2)
we will explain how to exploit the algebraic presentation for providing an efficient mechanism for constraint solving. Due to
space limitation, we will use a very simple running example inspired on the well-known pipes-and-filters architectural style.
It requires software components within an architecture to be composed as a connected sequence, that is, loops, branches
or disconnected parts are not allowed. Each component acts as an information processing unit that filters or transforms the
information pieces it receives on its input port and delivers them on its output port. The level of security of the information



Download English Version:

https://daneshyari.com/en/article/433296

Download Persian Version:

https://daneshyari.com/article/433296

Daneshyari.com

https://daneshyari.com/en/article/433296
https://daneshyari.com/article/433296
https://daneshyari.com

