Science of Computer Programming 97 (2015) 113-121

-
cience of Computer

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Understanding database schema evolution: A case study @CmssMark

Anthony Cleve *-*, Maxime Gobert?, Loup Meurice ¢, Jerome Maes?,
Jens Weber "

2 University of Namur, Belgium
b University of Victoria, Canada

HIGHLIGHTS

o We present a tool-supported method to analyze the history of a database schema.
e The method makes use of mining software repositories (MSR) techniques.
e We report on the application of the method to a large-scale case study.

ARTICLE INFO ABSTRACT

Article history: Database reverse engineering (DRE) has traditionally been carried out by considering three
Received 9 October 2013 main information sources: (1) the database schema, (2) the stored data, and (3) the
Accepted 5 November 2013 application programs. Not all of these information sources are always available, or of

Available online 22 November 2013 sufficient quality to inform the DRE process. For example, getting access to real-world

data is often extremely problematic for information systems that maintain private data.

Keywords: . X . .

Database understanding In recent years, the analysis of the evolution history of software programs have gained an
Schema evolution increasing role in reverse engineering in general, but comparatively little such research has
Software repository mining been carried out in the context of database reverse engineering. The goal of this paper is to

contribute to narrowing this gap and exploring the use of the database evolution history as
an additional information source to aid database schema reverse engineering. We present
a tool-supported method for analyzing the evolution history of legacy databases, and we
report on a large-scale case study of reverse engineering a complex information system
and curate it as a benchmark for future research efforts within the community.

© 2013 Elsevier B.V. All rights reserved.

Working in Paul Klint’s group at CWI has been my very first professional experience. This was certainly the best possible way to start
my research career. Paul is one of the most inspiring persons I have ever met. His ability to share his enthusiasm with his colleagues
and students, and to show them the way through his own achievements, is truly outstanding. Now that I have, in turn, the privilege
to supervise students, I make sure to regularly ask them the question Paul used to ask me: “So, are you still making progress?” Their
most recent answer is summarized in this paper. Happy Birthday, Paul! - Anthony.

1. Introduction

Understanding the evolution history of a complex software system can significantly aid and inform current and future
development initiatives of that system. Software repositories such as version management systems and issue trackers pro-
vide excellent opportunities for historical analyses of system evolution. Most research work in this area has concentrated on
program code, design and architecture. Fewer studies have focused on database systems and schemas. This is an unfortu-
nate gap as databases are often at the heart of many of today’s information systems. Understanding the database schema -

* Corresponding author.

0167-6423/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.025


http://dx.doi.org/10.1016/j.scico.2013.11.025
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2013.11.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.025&domain=pdf

114 A. Cleve et al. / Science of Computer Programming 97 (2015) 113-121

which captures domain-specific concepts, data structures and integrity constraints — often constitutes a prerequisite to un-
derstanding the evolution of such systems.

In this paper, we report on our experiences made in the context of a real-world project with the objective of evolving a
complex medical information system to fit new requirements. Specifically, (1) we present the tool-supported approach we
developed to better understand the evolution history of the system’s database, (2) we identify research challenges in the
context of studying the evolution of data-intensive systems, and (3) we curate a rich and complex case study that can be
used to explore these challenges (and others) by the software evolution research community.

The remainder of this paper is structured as follows. The next section introduces the main subject system studied in this
paper (OSCAR) and the general context of our software evolution project. Section 3 describes the approach we have followed
to study the evolution of the OSCAR database. In Section 4, we briefly present the tool suite that supports our approach.
The results obtained when analyzing the OSCAR'’s history are summarized in Section 5 and discussed in Section 6. A related
work discussion is given in Section 7 and Section 8 provides concluding remarks.

2. Context: The OSCAR system

OSCAR (Open Source Clinical Application Resource) is full-featured Electronic Medical Record (EMR) software system for pri-
mary care clinics. It has been under development since 2001 and is widely used in hundreds of clinics across Canada. As an
open source project, OSCAR has a broad and active community of users and developers. The Department of Family Practice
at McMaster University, which has managed OSCAR development efforts from inception to 2012, has recently transferred
oversight of ongoing development to a newly formed not-for-profit company called OSCAR-EMR. This move was motivated
by a new regulatory requirement to undergo ISO certification (ISO 13485 Medical devices — Quality management systems).

OSCAR architecture. OSCAR has a Web application architecture following the classical 3-tier paradigm. It employs a Java-
based technology stack, making use of Java Server Pages (JSP), Enterprise Java Beans (J2EE) and several frameworks such as
Spring, Struts and Hibernate. The source code comprises approximately two million lines of code with a rough distribution
of 600 KLOC for the application logic, 1200 KLOC for the presentation layer and 100 kLOC for the persistence layer. OSCAR
uses MySQL as the relational database engine and a combination of different ways to access it, including Hibernate object-
relational middleware, Java Persistence Architecture (JPA) and dynamic SQL (via JDBC). The reason for this combination of
technologies is the constant and ongoing evolution history of the product, which originated from JDBC, via Hibernate to JPA.

Oscar database. The OSCAR database schema has over 440 tables and many thousands of attributes. At the time of conducting
our study, the database schema of the OSCAR distribution did not contain any information on relationships between tables
(foreign keys) and no documentation was available about the schema. We later learned that the missing relationships were
due to the evolution history of OSCAR, which has been using the older MyISAM database engine provided by MySQL that
does not support foreign keys. A port to the newer InnoDB engine is underway, which will eventually allow foreign keys to
be defined explicitly.

OSCAR software repositories. The OSCAR community utilizes a range of software repositories and tools, including a feature
request and bug tracking system (provided by Sourceforge), a source code submission and review system (Gerrit Code
Review), a git-based configuration management system, a community Wiki (based on Plone) and three active mailing lists
(one for developers and two for users of different levels of technical expertise).

The need to understand the database schema. The OSCAR database has grown organically over many years and knowledge
about its internal structure is distributed among pockets of developers who have been contributing to specific functions of
the system (e.g., prescription writer, representation of lab results etc.). Our need to understand the OSCAR database schema
originated from our involvement in a project with the goal to develop software for a primary care research network (PCRN).
The purpose of the PCRN is to integrate health information kept in primary care EMR software in order to make them
accessible to medical research and data mining. An important step in developing the PCRN software is to create “export
conduits” for transferring health data from the EMR into a research database for subsequent query processing. Due to its
popularity (second largest market share in British Columbia) and openness, OSCAR has been chosen as one of the first EMR
products to interface with the emerging PCRN.

While designing early versions of the PCRN data migration adapter for OSCAR, we found that we were running into
questions pertaining to the database schema. Of course, as could be expected for any heavily evolved, real-world system,
some of them had to do with the fact that the database schema lacked documentation. Moreover, the schema did not con-
tain any declared relationships (foreign keys). Other questions were of a more semantic and puzzling nature. For example,
when attempting to design the function to export data on patient immunization records, we found two seemingly unrelated
schema structures covering the same semantic issue. One schema structure revolved around tables entitled “immunizations”
and “configimmunization” while the other schema structure revolved around tables entitled “preventions” and “prevention-
sext”. During our project we found that taking into consideration the evolution history of the database schema was helpful
in answering questions like these. (We found out that the “prevention” structured superseded the “immunization” struc-
ture but has still been retained in order to deal with legacy data.) This motivated us to investigate more formally OSCAR’s
evolution history and develop methods and tools to help with this investigation.



Download English Version:

https://daneshyari.com/en/article/433311

Download Persian Version:

https://daneshyari.com/article/433311

Daneshyari.com


https://daneshyari.com/en/article/433311
https://daneshyari.com/article/433311
https://daneshyari.com/

