
Science of Computer Programming 97 (2015) 122–126

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Understanding probabilistic software leaks ✩

Gregor Snelting

Karlsruhe Institute of Technology, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 September 2013
Accepted 5 November 2013
Available online 21 November 2013

Keywords:
Software security
Noninterference
Program analysis

Probabilistic security leaks in multi-threaded programs exploit nondeterminism and
interleaving. Probabilistic leaks does not leak secret values directly, but secret values
influence the probability of public events. The article explains probabilistic leaks, and
discusses various methods for checking probabilistic noninterference.

© 2013 Elsevier B.V. All rights reserved.

This article was written to Paul Klint’s 65th birthday; it honours his life-long quest for understanding software. Dear
Paul, Happy Birthday!

1. Introduction: language-based software leaks

Software security will be of overwhelming importance for future software systems. In particular, integrity and confiden-
tiality must be guaranteed: critical computations must not be manipulated from outside, and secret values must not flow
to public ports. But classical techniques (e.g., certificates) do not perform a fine-grained analysis of program behaviour and
thus cannot guarantee integrity and confidentiality. Indeed, the Stuxnet worm used stolen certificates. Additional program
analysis must be used to provide true security guarantees. This analysis is called information flow control (IFC).

IFC research started over 20 years ago, and since 15 years an international community emerged which seriously inves-
tigates IFC foundations and algorithms. Today, several IFC tools are available, including commercial ones. But note that IFC
does not replace more classical software security approaches – IFC adds an additional dimension to security techniques.

In this overview article, we discuss IFC algorithms for sequential and concurrent programs, which check confidentiality.1

A wealth of research has emerged which analyses source or machine code for confidentiality leaks. Most IFC algorithms
guarantee some form of noninterference: variables resp. program statements are classified secret (“high”) or public (“low”),
and secret values are not allowed to influence publicly visible behaviour. For variable v , its classification c(v) thus is c(v) =
Low or c(v) = High.2 The classical noninterference definition for sequential programs is based on low-equivalency of program
states: two states s, s′ are low equivalent, written s ∼=low s′ , if they coincide on low variables: ∀v ∈ dom(s)∩ dom(s′) : c(v) =
Low �⇒ s(v) = s′(v).3 A program P is noninterferent if

∀s, s′ : s ∼=low s′ �⇒ [[P]]s ∼=low [[P]]s′

✩ The work described in this paper was supported by DFG, grants Sn11/10-2 and Sn11/12-1, in the scope of the SPP 1496 “Reliably secure software
systems”.

1 Integrity is technically dual to confidentiality, hence any confidentiality analysis can easily be transformed into an integrity analysis, and vice versa.
2 Often complex lattices of security levels are used, not just the two-element lattice Low < High.
3 More complex state structures are possible, including nested blocks, heaps etc.

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.008

http://dx.doi.org/10.1016/j.scico.2013.11.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2013.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.008&domain=pdf

G. Snelting / Science of Computer Programming 97 (2015) 122–126 123

1 void main () :
2 x = inputPIN () ;
3 / / inputPIN i s High
4 / / x , y are Low
5 i f (x < 1234)
6 pr int (0) ;
7 y = x ;
8 pr int (y) ;

1 void thread_1 () :
2 x = input () ;
3 pr int (x) ;
4
5 void thread_2 () :
6 y = inputPIN () ;
7 x = y ;

1 void thread_1 () :
2 x = 0;
3 pr int (x) ;
4
5 void thread_2 () :
6 y = inputPIN () ;
7 while (y != 0)
8 y−−;
9 x = 1;

10 pr int (2) ;

Fig. 1. Examples for explicit and implicit leaks (left), for a possibilistic leak (middle), and for a probabilistic leak (right).

1 void main () :
2 x = inputPIN () ;
3 while (x > 0)
4 pr int ("x") ;
5 x−−;
6 while (true)
7 skip ;

1 void main () :
2 x=inputPIN () ;
3 while (x>0)
4 pr int ("x") ;
5 x−−;
6 i f (x==0)
7 { while (true)
8 skip ; }

1 void main () :
2 x = inputPIN () ;
3 while (x != 0)
4 x−−;
5 pr int (1) ;

1 void main () :
2 x = inputPIN () ;
3 while (x == 0)
4 skip ;
5 pr int ("x") ;
6 while (x == 1)
7 skip ;
8 pr int ("x") ;
9 . . .

10 while (x == 42)
11 skip ;
12 pr int ("x") ;
13 . . .

Fig. 2. All programs contain termination leaks and gradually leak (part of) the PIN. Termination-insensitive IFC algorithms will discover some, but not all of
these leaks.

Noninterference expresses that for any two initial low-equivalent program states s, s′ , the final states after execution of P
must also be low-equivalent.4 That is, different values of a high variable can never influence low program results, which
implies that P guarantees confidentiality. Noninterference thus provides security guarantees (only) on the language level; it
does not consider physical side channels, corrupt operating systems, defective hardware etc.

In Fig. 1 left,5 c(inputPIN) = High and c(x) = c(y) = Low; initially, x = y = 0. Thus all initial states are low-equivalent,
but different inputPINs will cause two different final values of y to be printed. Hence the noninterference definition
is broken: the final states are not always low-equivalent. Worse, if the inputPIN is less than 1234, an additional “0” is
printed. This example contains explicit and implicit leaks. Explicit leaks arise if (parts of) high values are copied to low
variables (in the example, we have the assignment chain inputPIN→ x→ y). Implicit leaks arise, if high values influence
the control flow (which may cause further explicit leaks or other observable behaviour); in the example, the if is indirectly
influenced by the inputPIN.

Fig. 1 middle presents a possibilistic leak. Such leaks depend on the interleaving of concurrent threads operating on shared
memory. A possibilistic leak arises if an interleaving exists which leads to an explicit or implicit leak. In the example, the
interleaving statement sequence 2, 6, 7, 3 causes the PIN to be copied to x and printed. In Fig. 1 right, a probabilistic leak
can be seen. The leaking depends on interleaving in a more subtle way: imagine the PIN is very high, hence the loop 7/8
has a long execution time. This will increase the probability that the scheduler will execute statement 3 before statement
9, and “0” is printed. If the PIN is low, the probability is higher that 9 is executed before 3, and “1” is printed. Hence a
high value influences the probability of a low event (namely statement 9), which in turn influences the probabilities for
different public outputs. Note that every possibilistic leak is also a probabilistic leak, but not vice versa: the example does
not have a possibilistic leak, as an explicit or implicit flow from PIN to x is impossible for any interleaving. Still, by running
the program several times, the attacker gathers information about the secret PIN.

Timing leaks exploit different runtime of e.g., then- and else- part of an if. Sometimes such runtime differences can
be measured by physical side channels. Sometimes probabilistic leaks are based on runtime, such as the above example.
However not all timing leaks are probabilistic leaks.6

Termination leaks are even more subtle, in particular in combination with probabilistic leaks. Consider the programs in
Fig. 2. If the attacker can decide whether the observed program is in a loop or not (by means outside program analysis
– e.g., physical side channels – as the halting problem is undecideable), she can for all four programs conclude whether
the PIN was < 0 (in fact, all four programs have identical low-observable behaviour). It is known that termination leaks in
interactive programs can leak an arbitrary amount of information [2]. Standard noninterference does not cover termination
leaks, as it assumes termination of all runs.

4 The noninterference definition can be expanded to cover input and output. For the time being, input statements are assumed to write variables in the
initial state s; output statements are assumed to read variables from the final state [[P]]s.

5 Examples are partially extracted from [1].
6 Timing leaks are an issue of its own and not considered in this paper.

Download	English	Version:

https://daneshyari.com/en/article/433312

Download	Persian	Version:

https://daneshyari.com/article/433312

Daneshyari.com

https://daneshyari.com/en/article/433312
https://daneshyari.com/article/433312
https://daneshyari.com/

