
Science of Computer Programming 97 (2015) 143–149

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Towards multilingual programming environments

Tijs van der Storm, Jurgen J. Vinju ∗

CWI, Amsterdam, Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 November 2013
Accepted 28 November 2013
Available online 10 December 2013

Keywords:
Programming environments
Language interoperability
Metaprogramming

Software projects consist of different kinds of artifacts: build files, configuration files,
markup files, source code in different software languages, and so on. At the same time,
however, most integrated development environments (IDEs) are focused on a single
(programming) language. Even if a programming environment supports multiple languages
(e.g., Eclipse), IDE features such as cross-referencing, refactoring, or debugging, do not often
cross language boundaries. What would it mean for programming environment to be truly
multilingual? In this short paper we sketch a vision of a system that integrates IDE support
across language boundaries. We propose to build this system on a foundation of unified
source code models and metaprogramming. Nevertheless, a number of important and hard
research questions still need to be addressed.

© 2014 Elsevier B.V. All rights reserved.

Programming environments are an important thread through Paul’s research career. From the early papers on the ASF+SDF Meta-
Environment to the Rascal programming language of today, a constant focus of Paul’s work has been to improve the life of the
programmer with better tools, better designs, and better languages. In the meantime the software landscape has only become more
complex, more heterogeneous and more multi-faceted. This short paper envisions a programming environment that both embraces
and unifies this multiplicity using one of Paul’s favorite topics: metaprogramming. Thanks Paul, for our professional careers and for
your friendship. We hope you enjoy reading this paper.

1. Introduction

Most software projects consist of many kinds of different artifacts, in different languages. For instance, a typical Java
Web application project might contain Java source files, templates (e.g., JSP), Javascript source files, SQL schema definitions,
ORM mapping files, and HTML templates. All these artifacts are related to each other. They may refer to each other through
special names. For instance, class names coincide with database tables and HTML templates refer to tag libraries. Generally
IDEs do not take the inter-operation of these languages into account; the reference links are not explicitly modeled, and
thus not actionable, but they do exist in the code base. As a result, supporting features such as cross-referencing, refactoring,
and debugging do not cross linguistic boundaries. This leads to inaccurate support which eventually leads to bugs that must
be resolved later.

Another source of language multiplicity is the meta information that is necessary to build, configure and deploy projects:
build files (e.g., Ant, Maven), configuration files (e.g., Spring XML files). These languages seem secondary, but they have big
impact on the semantics of the eventually running program, and as such may contain bugs. More problematically, language
support for the other languages (such as Java) does not model most of the information in this meta data, introducing
inaccuracy in IDE features such as quick lookup, flow graphs and autocomplete. The more frameworks that offer reuse and
high levels of abstraction are introduced, the harder it becomes to provide meaningful IDE features.

* Corresponding author.
E-mail addresses: storm@cwi.nl (T. van der Storm), jurgenv@cwi.nl (J.J. Vinju).

0167-6423/$ – see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.11.041

http://dx.doi.org/10.1016/j.scico.2013.11.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:storm@cwi.nl
mailto:jurgenv@cwi.nl
http://dx.doi.org/10.1016/j.scico.2013.11.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.11.041&domain=pdf


144 T. van der Storm, J.J. Vinju / Science of Computer Programming 97 (2015) 143–149

Language referencing and meta information are just two examples of relations between languages. Other relations be-
tween languages include containment, where one language is embedded in another (e.g., SQL in COBOL code), – or derivation
where one language is compiled into another language (e.g., code generation of a DSL). We expect truly multilingual IDEs
to take all of these relations into account.

Common IDEs like Eclipse provide IDE support for some of these languages and some of their combinations. They are,
however, primarily targeted at a single programming language and there exists ample opportunity for further integration.
For instance, Eclipse is mainly an IDE for Java. The plugin system of Eclipse allows users to get IDE support for other
languages, such as JavaScript, XML, SQL, etc. However, such plugins are mostly isolated from each other: integration across
language boundaries is limited. Often, each language lives in its own silo. As a result, the programmer constantly has to
switch perspectives and mentally keep the different artifacts in sync.

In this paper we analyze this problem in some depth and propose an approach to overcome these limitations. The key
aspect of our design is to consider the multiplicity of languages as a federation of languages. Only the combination of all
artifacts leads to the software system captured by the project, – in a sense there is only one big, composite language. Un-
derstanding a software project thus means understanding how these languages work together. Consequently, we hope, truly
multilingual IDE support will be instrumental in improving understanding and thus in helping to construct and maintain
high quality software.

2. Towards monolingual programming environments, redux

Heering and Klint wrote “Towards monolingual programming environments” in 1985 [8], warning us for the complexity
of the exploding number of languages in programming environments and proposing to fully reverse this development into
a single language with a single and consistent programming and debugging environment. Today we are faced with what
we were warned for: hundreds of independent languages for programming, scripting, configuring, defining, and debugging
software. Moreover, due to the availability of memory and disk space, we now have all these languages installed and active
within the same computer system. For the sake of argument, let us assume this complex reality was introduced for all good
reasons.

In this paper we propose to view the de facto multiplicity of languages that a programmer is subjected to as a single,
federated language. This federation of languages encompasses all kinds of “source code in the broad sense” [18]. What is the
syntax of this language? What is its semantics? How do we model name resolution, declarations, uses, control flow, data
flow, and types for this language? Given answers to these questions, we will have a principled method of modeling cross
language semantic dependency. On top of such generic models, advanced IDE features such as refactoring tools, debugging,
hover help, reference hyperlinks and auto-complete may be constructed. We propose a high level design and a research
agenda towards integrated, multi-lingual development environments.

2.1. One IDE to rule them all

Here we describe the high-level requirements for enabling the syntactic and semantic integration of IDE support for
multiple software languages. This design acts as a frame of reference for identifying the open problems that we discuss in
Section 3.

Uniform representation. At a very basic level language artifacts are a form of structured data. To allow this data to be
processed in a typed and uniform way, requires three meta-level services. First, the structure of the data should be modeled
in a uniform way, for instance using meta modeling, data description, or schema language. Second, the data itself should
have a uniform, typed in-memory representation. Finally, a typed serialization/deserialization service is needed to load the
language artifacts to/from disk.

Uniform identification. Artifacts and sub-entities of those artifacts often have an identity to be able to refer to them. When
a project consists of multiple languages, there are multiple meta models at play. Through the uniform representation the
artifacts can be processed in a uniform way. However, each language might provide specific ways of identifying entities. To
refer to elements from different languages in a uniform way we need a generic identification mechanism that works for all
of them.

Modeling relations. There are many examples of possible relations between artifacts and relations between sub-artifact
elements: containment, call graphs, use-define relations, import relations, control-flow and data flow graphs, inheritance
relations etc. It should be possible to super-impose such relations on top of the uniform representation of the artifacts. The
generic identification mechanism plays a key role here.

Hooks into the user interface. The analyses and transformations realized on top of the uniform representations of artifacts
and the relations between them should be made available to the programmer through user interface affordances. The key
requirement, however, is that the interface is language parametric. It should be possible to, for instance, provide syntax
coloring for a language without having to customize the IDE per language. The same holds for invoking refactorings, hyper-
linking artifacts, creating outlines etc.



Download	English	Version:

https://daneshyari.com/en/article/433315

Download	Persian	Version:

https://daneshyari.com/article/433315

Daneshyari.com

https://daneshyari.com/en/article/433315
https://daneshyari.com/article/433315
https://daneshyari.com/

