
Science of Computer Programming 96 (2014) 156–174

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Model-driven toolset for embedded reconfigurable cores:
Flexible prototyping and software-like debugging

Loïc Lagadec a,b,∗, Ciprian Teodorov a,b, Jean-Christophe Le Lann a,b,
Damien Picard, Erwan Fabiani a,c

a Lab-STICC MOCS, CNRS 6285, France
b ENSTA-Bretagne, France
c Université de Bretagne Occidentale, France

h i g h l i g h t s

• We model embedded reconfigurable cores.
• We consider modeling the configuration plane.
• We generate a fully-featured prototype.
• We offer an object-oriented view of the prototype.
• We support high-level debugging through observability, traceability and controllability.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 October 2012
Received in revised form 14 February 2014
Accepted 17 February 2014
Available online 4 March 2014

Keywords:
Software engineering
Model-driven
Debugging
Reconfigurable computing
System-on-Chip

Improvements in system cost, size, performance, power dissipation, and design turnaround
time are the key benefits offered by System-on-Chip designs. However they come at the
cost of an increased complexity and long development cycles. Integrating reconfigurable
cores offers a way to increase their flexibility and lifespan. However the integration
of embedded reconfigurable units poses a number of unique challenges in terms of
design-space exploration and system exploitation. Over the last few years, model-driven
engineering has become one of the most promising methodologies for tackling such
challenging software problems.
This paper presents Biniou, a model-driven toolset for embedded reconfigurable core
modeling. Biniou is a major step ahead of the Madeo framework that was one of the rare
non-commercial environments targeting reconfigurable design automation. In Biniou, the
design space is broadened with (re-)configuration modeling aspects, and the exploitation
tools are enhanced through the use of multi-level simulation and high-level debugging.
These advancements are illustrated through a case-study focused on the design-space
exploration of a coarse-grained reconfigurable architecture and through an examination of
the integration of the debug-specific features into the framework. The main benefits of the
presented toolset are: efficient domain-space exploration (validation), software design-kit
generation (usability), software-like debug facilities (verification).

© 2014 Elsevier B.V. All rights reserved.

* Corresponding author.

http://dx.doi.org/10.1016/j.scico.2014.02.015
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1016/j.scico.2014.02.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.015&domain=pdf


L. Lagadec et al. / Science of Computer Programming 96 (2014) 156–174 157

1. Introduction

The tremendous evolution pace of the semiconductor industry, has enabled unprecedented advances in the ways we see
computer system design. Today’s integrated circuits (IC) are more complex and heterogeneous than ever. Being composed of
several processors (μP), digital signal processors (DSP), communication networks (NoC), and complex memory hierarchies,
they have attained full system functionality into a single chip, and are referred to as System-on-Chip (SoC). These SoCs have
the potential to offer several benefits, including improvements in system cost, size, performance, power dissipation, and
design turnaround time. Unfortunately, the SoC design process, which schematically consists of successive refinements of an
abstract specification towards the physical realization, is becoming an increasingly difficult task.

In the early 1990s the term hardware/software co-design appeared to describe a confluence of problems in IC system
development. The prefix co is used to denote a joint or partnered development – as opposed to the coincidental develop-
ment at the same time – of both hardware and software. The key idea behind hardware/software co-design is to find the
right trade-off between speed of hardware execution and generality of software, while considering the costs incurred. The
main problem in hardware/software co-design is how to design an embedded system that contains both hardware execution
(through application-specific ICs1) and software execution support (through μP). A critical decision that has a wide effect on
overall system cost is how to partition the system into its hardware and software components. A mistake made in this de-
cision can add significant delay and cost to the design process, since correction in this context implies reworking the entire
design. The longer this irrevocable decision can be delayed, the better the chance to keep overall system costs to a minimum.

Historically, reconfigurable devices, such as Field-Programmable Gate Arrays (FPGA), provided a solution to this co-
nundrum by offering support for late hardware customization, which – much like software late binding – enables early
availability, reuse and tailoring. Compared to ASIC, the agility of reconfigurable architectures comes from the ability to re-
allocate resources (potentially in the field, partially, and on the fly) to form a new circuit. This favors fast prototyping and
early circuit implementation, sometimes even prior to full specification availability.

Today, with the emergence of the fabless2 business model, new competitors have entered the race of reconfigurable
platforms [1–3]. The field of reconfigurable computing has morphed, and besides mainstream FPGA vendors such as Xilinx
and Altera, the fabless solution providers offer more specialized reconfigurable devices, ranging from coarse-grained cores
for DSP [4], to embeddable units [5].

Embedding reconfigurable cores into an SoC offers a tradeoff between the area overhead and the flexibility of the sys-
tem that must be carefully considered. Conceptually, the area overhead can be estimated throughout the design cycle by
physical synthesis tools (designing the reconfigurable device) while the flexibility is scored using applicative synthesis tools
(performing the resource allocation in order to map a portion of the application to the reconfigurable unit).

Unfortunately, traditional solutions require a large amount of manual tuning during the physical synthesis and remain
bounded to specific tools during applicative synthesis, reducing the ability to explore new architectural options. The loss of
effectiveness of methods and tools to address real hardware over the increasing hardware complexity is referred to as the
productivity gap. This grows with every new technological evolution and brings new challenges to the designers [6]. In the
scope of SoC design, this trend concerns both architecture and software design. This prohibits short development cycles, and
renders the design space exploration (DSE) unaffordable.

To address these issues, in this paper, we introduce an open model-driven toolset for the design of embedded recon-
figurable units including generation of both hardware prototypes and their specific SDKs (exploitation tools).3 We rely on
the Madeo framework mixed ADL which provides architectural DSE and retargetable place & route tools [7]. In addition to
architectural DSE features (such as sizing LUTs, arithmetic operators, etc.) the Biniou toolset also enables DSE for partial and
multi-context dynamic reconfiguration modes, thus widening the design space. Moreover, to facilitate agile development,
and to ease exploitation our solution tightly integrates with an innovative software-like debugging infrastructure, named
RedPill, which offers high-level signal traceability features and control over the hardware execution throughout all circuit
synthesis stages – from the application to the bitstream, and more.

The creation of an integrated toolset targeting design-space exploration of embedded reconfigurable units, such as Biniou,
is a complex undertaking requiring flexible and extensible solutions for complex problem-spaces. The solution presented in
this paper relies at its core on many years of proactive research and development in the FPGA design-automation field,
notably around the Madeo infrastructure [7]. However, addressing the highly-dynamic and challenging field of embedded
reconfigurable units, in the context of SoC design, opens the door to a whole new set of problems, notably in terms of tool
adaptability, integration, and synergy. Besides providing an answer to these technical and methodological issues, the main
contributions of this work are:

• Configuration plane modeling. In the context of design-space exploration of embedded reconfigurable architectures, be-
sides computational architecture modeling, the design of the configuration infrastructure plays a very important role

1 Application-specific ICs are commonly named ASICs.
2 Fabless manufacturing is the design and sale of hardware devices and semiconductor chips while outsourcing the fabrication to a specialized manufac-

turer, called a foundry.
3 In this study we will use SDK, or exploitation flow (tools) to refer to the set of tools aimed at mapping a given application on a target reconfigurable

architecture.



Download English Version:

https://daneshyari.com/en/article/433344

Download Persian Version:

https://daneshyari.com/article/433344

Daneshyari.com

https://daneshyari.com/en/article/433344
https://daneshyari.com/article/433344
https://daneshyari.com

