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h i g h l i g h t s

• We automatically compute sufficient conditions for program correctness.
• We rely on Abstract Interpretation to compute sound approximate solutions.
• We present under-approximations for existing numeric abstract domains.
• We built a (freely available) prototype implementation using polyhedra.
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In this article, we discuss the automatic inference of sufficient preconditions by abstract
interpretation and sketch the construction of an under-approximating backward analysis.
We focus on numeric properties of variables and revisit three classic numeric abstract
domains: intervals, octagons, and polyhedra, with new under-approximating backward
transfer functions, including the support for non-deterministic expressions, as well as lower
widenings to handle loops. We show that effective under-approximation is possible natively
in these domains without necessarily resorting to disjunctive completion nor domain
complementation. Applications include the derivation of sufficient conditions for a program
to never step outside an envelope of safe states, or dually to force it to eventually fail. We
built a proof-of-concept prototype implementation and tried it on simple examples. Our
construction and our implementation are very preliminary and mostly untried; our hope is
to convince the reader that this constitutes a worthy avenue of research.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A major problem studied in program verification is the automatic inference of program invariants using forward analyses,
as well as the inference by backward analysis of necessary conditions for programs to be correct. In this article, we consider
the dual problem: the inference by backward analysis of sufficient conditions for programs to be correct.

Motivation As motivating example, consider the simple loop in Fig. 1(a): j starts from a random value in [0;10] and is
incremented by a random value in [0;1] at each iteration. A forward invariant analysis would find that, at the end of the
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Fig. 1. A simple loop program (a), its concrete invariant equation system (b), and its concrete sufficient condition equation system (c).

loop, j ∈ [0;110] and the assertion at line (8) can be violated. We are now interested in inferring conditions on the initial
states of the program assuming that the assertion actually holds. A backward analysis of necessary conditions would not
infer any new condition on the initial value of j because any value in [0;10] has an execution satisfying the assertion
(consider, for instance the executions where the random choice [0;1] always returns 0). However, a backward sufficient
condition analysis would compute the set of initial states such that all executions necessarily satisfy the assertion. It will
infer the condition: j ∈ [0;5] as, even if [0;1] always evaluate to 1 in the loop, j <= 105 holds nevertheless. Necessary
and sufficient conditions thus differ in the presence of non-determinism.

Sufficient conditions have many applications, including: contract inference, counter-example generation, optimizing com-
pilation, verification driven by temporal properties, etc. Contract inference [2] consists in inferring sufficient conditions at a
function entry that ensure that its execution is error-free. Similarly, counter-example generation [3] infers initial states that
guarantee that the program goes wrong. Safety checks hoisting, a form of compiler optimization, consists in replacing a set
of checks in a code portion (such as a loop or method) with a single check at the code entry. For instance, array bound
check hoisting (as done in [4]) infers sufficient conditions under which all array accesses in a method are correct, and then
inserts a dynamic test that branches to an optimized, check-free version of the method if the condition holds but reverts
to the original method if it does not. A final example use is the verification of temporal properties of programs, such as
CTL formulas, as done by Massé [5], where necessary post-conditions as well as necessary and sufficient preconditions are
mixed to take into account the interplay of modalities (� and �).

Formal methods Determining the conditions under which a program is correct corresponds to inferring Dijkstra’s weakest
liberal preconditions [6]. The support for non-deterministic expressions, which was not present in Dijkstra’s original presen-
tation, was later added by Morris [7]. Weakest preconditions, and more generally predicate transformers, form the base of
current deductive methods (see [8] for a recent introduction). They rely on the use of theorem provers or proof assistants
and, ultimately, require help from the user to provide predicates and proof hints. Weakest preconditions also appear in
model-checking in the form of modal operators [9]. Many instances of model-checking are based on an exhaustive search in
the state-space, represented in extension or symbolically, while recent instances build on the improvement in solvers (such
as SAT modulo theory [10]) to handle infinite-state spaces. Refinement methods, such as counter-example-guided abstract
refinement [11], also merge model-checking with weakest preconditions computed by solvers. In this article, we seek to
solve the sufficient condition inference problem using abstract interpretation instead. The benefits are: full automation, sup-
port for infinite-state systems, parametrization by a choice of domain-aware semantic abstractions and dedicated algorithms,
and independence from a generic solver, with the promise to scale up to large programs.

Abstract interpretation Abstract interpretation [12] is a very general theory of the approximation of program semantics. It
stems from the fact that the simplest inference problems on programs are undecidable (or, at least, grow too quickly in
cost with the size of the state space to be of any use), and so, approximations are required to achieve scalable and yet fully
automatic analyses. It has been applied with some success to the automatic generation of invariants on industrial applica-
tions and led to commercial tools, such as Astrée [13]. Its principle is to replace the computations on state sets (so-called
concrete semantics) with computations in computer-representable abstractions that, for the sake of efficiency, only repre-
sent a selected subset of program properties and ignore others. Numeric abstract domains, which reason on the numerical
properties of variables, are widely used and much effort has been spent designing domains adapted to selected properties
or achieving a selected cost versus precision trade-off. The two most popular domains are: the interval domain (introduced
by Cousot and Cousot in [14]) that infers variable bounds, and the polyhedra domain (introduced by Cousot and Halbwachs
in [15]) that infers affine inequalities on variables. A more recent example is the octagon domain [16], which infers unit
binary inequalities and thus achieves a balance between intervals and polyhedra in terms of cost and precision. Classic
abstract domains enjoy abstract operators for forward and backward analyses, but their backward operators are geared to-
wards the inference of necessary conditions and not the inference of sufficient ones. Moreover, when an exact result cannot
be computed (due to the limited expressiveness of the domain or the impracticability of computing a precise solution),



Download English Version:

https://daneshyari.com/en/article/433364

Download Persian Version:

https://daneshyari.com/article/433364

Daneshyari.com

https://daneshyari.com/en/article/433364
https://daneshyari.com/article/433364
https://daneshyari.com

