Science of Computer Programming 78 (2013) 1035-1054

Contents lists available at SciVerse ScienceDirect

cience of Computer
rogramming

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

“ADORE”, a logical meta-model supporting business process evolution

Sébastien Mosser *?*, Mireille Blay-Fornarino ¢

2 Inria Lille-Nord Europe, LIFL CNRS UMR 8022, University of Lille 1, France
b SINTEF IKT, Oslo, Norway
€3S CNRS UMR 7271, University of Nice, France

ARTICLE INFO ABSTRACT

Article history: The Service Oriented Architecture (SoA) paradigm supports the assembly of atomic
Recewed 1 Ap'rll 2011 services to create applications that implement complex business processes. Since “real-
Received in revised form 3 January 2012 life” processes can be very complex, composition mechanisms inspired by the Separation

Accepted 19 June 2012

Available online 20 July 2012 of Concerns paradigm (e.g. features, aspects) are good candidates to support the definition

and the upcoming evolutions of large systems. We propose ADORE, “an Activity meta-moDel
supOrting oRchestration Evolution” to address this issue. The ADORE meta-model allows

Is((e)},,\words' process designers to express in the same formalism business processes and fragments of
Business processes processes. Such fragments define additional activities that aim to be integrated into other
Sep. of concerns processes and adequately support their evolution. The underlying logical foundations of
Logical composition ADORE allow the definition of interference detection rules as logical predicate, as well as the

definition of consistency properties on ADORE models. Consequently, the ADORE framework
supports process designers while they design and then apply evolutions on large processes,
managing the detection of interferences among fragments and ensuring that the composed
processes are consistent and do not depend on the order of the composition.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the Service Oriented Architecture (SoA) paradigm an application is defined as an assembly of services that typically
implements mission-critical business processes [1]. Services are loosely coupled by definition, and complex services are
built upon basic ones using composition mechanisms. These compositions describe how services will be orchestrated when
implemented, and are created by business process specialists. In this context, a large part of the intrinsic complexity of an
application is shifted into the definition of business processes. To perform such a task, process designers use “composition of
services” mechanisms (e.g., orchestrations of services) and realize their use cases as message exchanges between services. A
factor that contributes to the difficulty of developing complex Soa applications is the constant evolution of the underlying
business. As a consequence, a business expert initially designs its own process, which is then enriched by evolution added
by other experts, e.g., the security expert, the persistence expert, and the sales expert.

This situation emphasizes the need for separation of concerns (SoC) mechanisms as a support to the design and the
evolution of complex business processes. In the SoC paradigm, concerns are defined separately, and finally assembled
into a final system using composition techniques. In the context of Soa, it leads us to compose orchestrations according
to the upcoming evolutions, that is, to compose “composition of services”. The complexity of building the final behavior that
integrates all the concerns together is delegated to an algorithm.

* Corresponding author at: SINTEF IKT, Oslo, Norway.
E-mail addresses: sebastien.mosser@sintef.no, sebastien.mosser@gmail.com (S. Mosser), blay@polytech.unice.fr (M. Blay-Fornarino).

0167-6423/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2012.06.009


http://dx.doi.org/10.1016/j.scico.2012.06.009
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:sebastien.mosser@sintef.no
mailto:sebastien.mosser@gmail.com
mailto:blay@polytech.unice.fr
http://dx.doi.org/10.1016/j.scico.2012.06.009

1036 S. Mosser, M. Blay-Fornarino / Science of Computer Programming 78 (2013) 1035-1054

The contribution of this paper is to support the evolution of business processes through a compositional approach, i.e., to
automatically support at the model level the evolution of complex business processes through the composition of smaller
artifacts. We propose ADORE to fulfill this goal. ADORE means “an Activity meta-moDel supOrting oRchestration Evolution” and
supports a compositional approach for process evolution. Evolutions are reified as models describing smaller orchestrations
of services to be composed to produce the evolved system.

2. Running example: exploring pictures folksonomies

To illustrate this work, we use the PICWEB system. This example was initially designed for a M.Sc. lecture focused on
“Workflow & Business Processes”, given in two universities (i.e., the Polytech’Nice School of Engineering and the University of
Lille 1). As a consequence, it follows SoA methodological guidelines, positioning it as a typical usage of a Soa for experimental
purposes [2]. PICWEB is a subpart of a larger legacy system called JSEDUITE,! which delivers information to several devices
in academic institutions. It supports information broadcasting from external partners (e.g., transport network, school
restaurant) to several devices (e.g., smart-phone, PDA, desktop, public screen). JSEDUITE is currently deployed and used daily
in three institutions (i.e., Polytech’Nice, Ies Clément Ader and IRsam), where large plasma screens are used to broadcast
public information. PICWEB is a subpart of JSEDUITE, retrieving a set of pictures annotated with a given tag from existing
partner services. It implements a business process called getPictures. Based on a received tag, the process retrieves all
the available pictures associated with tag from the usual repositories (e.g., FLICKR, provided by YAHoo!). In the remaining
paragraphs, we assimilate PICWEB into this particular business process. We represent in Fig. 1(a) the first implementation
of PICWESB, as initially defined in JSEDUITE. This process (i) receives a tag (ao), (ii) asks a registry for the Ap1 key associated
to FLIcKR® (a;), (iii) retrieves the relevant pictures from the repository (a,) and finally (iv) replies this set to the user (as).

Need for evolutions in PICWEB. SOA systems are highly versatile, as they need to be continuously adapted to their underlying
business. We illustrate this need in PICWEB through the change history of the system. These evolutions were driven by
changes in the business needs, impacting the business process. For example, FLICKR conditions changed to restrict the
number of times its service can be called per day. The business process had to evolve (e.g., introducing a cache to reduce
call frequency) to tackle this unforeseen change. Each evolution implies to change an activity graph increasingly complex,
enforcing the need for SoC mechanisms. The final process represented in Fig. 1(b) (currently up and running) was built
according to the five following situations. It was first enhanced to also address the picasa service (bq, b, ), provided by
GOOGLE. Second, we also added a cache mechanism in front of the service calls (cy, ¢3, c3). To limit the size of the retrieved
set up to a given threshold, third we introduced a truncation mechanism (d). Then, we introduced a shuffling activity (e;)
to obtain different pictures each time. Finally, we introduced a timer mechanism to log the execution time of the shuffle

activity (f1, f2).

Challenges. As we saw, even on a simple example, the need for evolution to react to business changes in the context of a
business process is important. Therefore we consider in this article evolution as the integration of a set of changes in a legacy
process. These changes are expressed separately by different stakeholders, and often introduce activities to be executed
concurrently with the legacy process (e.g., invoking picasa should not impact the invocation of FLICKR). Thus, the mechanism
used to support these evolutions should not introduce unwanted waiting between activities. More critical interferences
such as non-determinism can also be introduced in legacy processes. The manual detection of such interferences is difficult
in front of thousands of activities and relations. Moreover, allowing a human to edit manually a business process does
not ensure strong properties (e.g., preservation of the pre-existing behavior) on the obtained process. The key idea of this
contribution is to provide a formal meta-model supporting such evolution in an automatic way, i.e., composing unforeseen
changes with legacy processes and supporting interferences detection.

3. ADORE: modeling business process with first-order logic

We define ADORE to address these challenges. The ADORE activity meta-model is directly inspired by the BPEL language
grammar expressiveness. The BPEL is defined as “a model and a grammar for describing the behavior of a business process
based on interactions between the process and its partners” [3]. The BPEL defines nine different kinds of atomic activities
(e.g., service invocation, message reception and response) and seven composite activities (e.g., sequence, flow, if/then/else),
plus additional mechanisms such as transactions and message persistence. We decide to extract from the BPEL all concepts
necessary “to describe the behavior of a business process”. From the activity expressiveness point of view, ADORE can be seen
as a simplification of the BPEL concepts. We focus here on the definition of an activity kernel that support the definition
of business processes in the large, without introducing a strong dependency with BPEL-specific concepts. Thus, we do not
consider in ADORE such notions (e.g., correlation set). A coarse-grained description of the ADORE meta-model is depicted in
Fig. 2 using the class-diagram formalism.

In ADORE, a business process is defined as a partially ordered set of activities. It defines several variables, used as inputs
or outputs by its activities. Binary relations are used to schedule the activity set. A process can model an orchestration

1 http://www.jseduite.org.


http://www.jseduite.org
http://www.jseduite.org
http://www.jseduite.org
http://www.jseduite.org

Download English Version:

https://daneshyari.com/en/article/433423

Download Persian Version:

https://daneshyari.com/article/433423

Daneshyari.com


https://daneshyari.com/en/article/433423
https://daneshyari.com/article/433423
https://daneshyari.com

