Science of Computer Programming 76 (2011) 1078-1097

Contents lists available at ScienceDirect cience of Computer
rogramming

Science of Computer Programming i

journal homepage: www.elsevier.com/locate/scico

Studying software evolution using artefacts’ shared
information content”

Tom Arbuckle *

Computer Science and Information Systems, University of Limerick, Limerick, Ireland

ARTICLE INFO ABSTRACT

Article history: In order to study software evolution, it is necessary to measure artefacts representative
Received 3 August 2010 of project releases. If we consider the process of software evolution to be copying with
Received in revised form 7 November 2010 subsequent modification, then, by analogy, placing emphasis on what remains the same

Accepted 9 November 2010

Available online 27 November 2010 between releases will lead to focusing on similarity between artefacts. At the same time,

software artefacts — stored digitally as binary strings - are all information. This paper
introduces a new method for measuring software evolution in terms of artefacts’ shared
information content. A similarity value representing the quantity of information shared
between artefact pairs is produced using a calculation based on Kolmogorov complexity.

Keywords:
Software evolution
Software measurement

Information theory Similarity values for releases are then collated over the software’s evolution to form a map
Kolmogorov complexity quantifying change through lack of similarity. The method has general applicability: it can
Similarity metric disregard otherwise salient software features such as programming paradigm, language
Information content or application domain because it considers software artefacts purely in terms of the
ComplLearn mathematically justified concept of information content. Three open-source projects are

analysed to show the method’s utility. Preliminary experiments on udev and git verify
the measurement of the projects’ evolutions. An experiment on ArgoUML validates the
measured evolution against experimental data from other studies.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Within software evolution, several broad themes can be identified [1]. Moreover, the term is often used interchangeably
with software maintenance [2]. Specifically, therefore, our focus here is on the theme of change of software artefacts in
time or across versions. Following the everyday use of the word evolution, we want to examine how software is modified
in response to its environment or requests from its users. With our eye on listed challenges in software evolution research
[3-5], we want to study how software evolves.

A rich source of evolutionary data comes from mining software repositories [6]. Open-source projects have proliferated
largely solving former problems with access to proprietary development information. Given that we can obtain many
different kinds of software artefacts, how are their evolutions to be measured?

Software is generally measured using software metrics. This field has a long and venerable heritage [7-10] and a
disappointing preponderance of difficulties and disagreements [11-19]. With hundreds of software metrics to choose from,
it is difficult to make a convincing case that any one software metric is significantly better. They tend to be designed for
particular purposes and need to be calibrated against development context.

An application of information theory, specifically employing a measurement based on the (relative) Kolmogorov
complexity, provides a means, disregarding purposes, languages and context, of measuring software and thereby software
evolution. Software is, after all, information and that information is representative of the decisions made in its design and

R Figures in this paper make use of colour. Obtaining an electronic or colour-printed version of the paper may aid comprehension.
* Tel.: +353 6123 4284.
E-mail addresses: tom.arbuckle@ieee.org, tom.arbuckle@ul.ie.

0167-6423/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.11.005

http://dx.doi.org/10.1016/j.scico.2010.11.005
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:tom.arbuckle@ieee.org
mailto:tom.arbuckle@ul.ie
http://dx.doi.org/10.1016/j.scico.2010.11.005

T. Arbuckle / Science of Computer Programming 76 (2011) 1078-1097 1079

construction. By choosing information theoretic measurement, we attack the hard problem of software measurement with
the precision and ineluctability of a mathematically defined concept.

The object of this paper is to continue to reinforce our claims [20-22] by experimentally examining data from open-
source projects. After preliminary studies of the projects udev [23] and git [24], a more detailed exploration of the project
ArgoUML [25] permits validation of the technique against results obtained by other researchers.

The structure of the remainder of this paper is as follows. First, we clarify our terminology and relate shared information
measurement to the software engineering literature on measurement and comparison. We state the thesis of the paper and
the approach to be followed in validating it. Then, a self-contained section provides only the background theory necessary to
understand the experiments. Next we describe the experimental approach. The steps to be followed, interpretation of results,
and threats to validity are detailed. We conduct two preliminary studies. There follows a third, comparative, experiment in
which the results obtained are validated against those of other researchers. Related work is outlined. The conclusions and
future work are presented. Finally, appendices on certain technical aspects of the theory are provided, together with the
bibliography.

2. Theme and thesis
2.1. What is software evolution?

We define software evolution as the way in which software artefacts change between versions. A version need not
represent a full release but could simply represent the current development status. Versions need not be chronologically
ordered. Provided the artefacts are representative, we do not restrict their type. In practice, we often consider source code,
representations of structure, representations of behaviour or the machine instructions themselves.

There is an extensive literature on how software evolves in this sense. Mens and Demeyer’s paper concerning software
evolution metrics [26] provides key references. In addition, Fernandez-Ramil et al. [27] have written a review starting from
the early work of Belady and Lehman and going on to discuss studies of evolution of open-source systems. Israeli and
Feitelson’s study of Linux kernel evolution [28] provides a recent notable addition.

2.2. Software measurement = (software) metrics?

Evolution implies change and in order to quantify change, we need a measurement method. Software is traditionally
measured using software metrics, more properly called software measures [29].

Early methods of measuring software include counting instructions [30] or lines of code (LoC) [31] with LoC being
suggested as a baseline software measurement as late as 1983 by Basili and Hutchens [32]. Further early publications on
software metrics include Rubey and Hartwick [33]. McCabe’s cyclomatic complexity [7], and Halstead’s software science [8].
Reading early reviews of the field, such as Perlis et al. [9] or Cook [34], it is plain that, on the one hand, the need for means of
measuring software has been clearly recognised, and, on the other hand, the field has already run into difficulties and been
the topic of intense debate. Indeed, as we have already mentioned, metrics are also the subject of subsequent critical papers
[11-14]. More recent metrics including those by Chidamber and Kemerer [10], the metrics by Lorenz and Kidd [35] and the
MOOD set of metrics [36], focus on the measurement of object-oriented code. While Chidamber and Kemerer’s metric suite’s
popularity means that it has almost become a de facto standard, it has not escaped extensive criticism [15-17]. The MOOD
metrics have also been criticised [18] although other authors have found them to be useful [37]. The Lorenz and Kidd metrics
are similarly the subject of claim and counter-claim [38,39]. It is clear that the subject of the measurement of software is
both difficult and contentious. As Abran et al. state in their 2003 paper [19]

This is a clear indication that, when looked at from an engineering perspective, measurement in software engineering
is far from being mature and that it constitutes a fairly weak engineering foundation for the field of software
engineering.

One area of software measurement that has gained acceptance is the area of software measurement for project estimation
and management. From early work by Putnam [40] and Albrecht [41], function point measurement has progressed to become
a necessary part of software process improvements initiatives such as CMM or CMMI. Boehm et al. and Jones describe two
current leading methods [42,43].

Finally, attempts to employ information theory to measure software have, almost without exception, involved the use of
(Shannon [44]) entropy. Starting from Campbell [45] and Hellerman [46], two recent examples are Sarkar et al. [47] or Anan
et al. [48]. We will not employ entropy. See Appendix A for more details.

2.3. Edit distances and beyond

There are alternatives to using software metrics and comparing the values they produce on different artefacts. During
coding, a developer comparing two files will commonly use a file differencing tool, such as the UNIX command diff to
show the points at which the files differ. Such tools employ the Myers algorithm [49] (or a variant [50]) to create a graph

Download English Version:

https://daneshyari.com/en/article/433472

Download Persian Version:

https://daneshyari.com/article/433472

Daneshyari.com

https://daneshyari.com/en/article/433472
https://daneshyari.com/article/433472
https://daneshyari.com/

