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• We  extend  the SOBI  blind  source  separation  method  to data  on  the  cerebral  cortex.
• We  compare  this  extension  to the  FastICA  and  original  SOBI  methods.
• The  extended  SOBI  method  outperforms  the  other  methods  in  simulations.
• Application  to  structural  data  on  the  cortex  reveals  original  networks.
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a  b  s  t  r  a  c  t

Blind  source  separation  (BSS)  methods  have  become  standard  brain  imaging  tools  and  are  routinely
used  for  noise  and  artifact  removal,  as well  as  for extracting  related  spatial  and  temporal  components
from  brain  signals.  Despite  their  popularity,  BSS  methods  have  rarely  been  used  to  explore  maps  of
cortical  thickness  and  sulcal  folding  patterns.  Our  limited  knowledge  of the  relationship  between  cortical
morphometry,  brain  development  and  pathologies  of  the central  nervous  system  makes  BSS  methods
ideal  investigative  tools.  We  propose  a novel  spatial  BSS  method  tailored  for application  to  the  cerebral
cortex  based  on  the  second  order  blind  identification  (SOBI)  method.  Our  method  outperforms  the regular
SOBI and  popular  FastICA  BSS methods  on  simulations.  Application  to maps  of  cortical  thickness  and
curvature  from  normal  controls  reveals  original  structural  networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of modern brain imaging methods, researchers
now have a wealth of data to explore brain networks. In this pursuit,
blind source separation (BSS) methods have become increasingly
popular to identify, separate, and denoise brain signals (Makeig
et al., 1997; Damoiseaux et al., 2006; Jung et al., 2000). BSS meth-
ods, such as second order blind identification (SOBI; Belouchrani
et al., 1997) and FastICA (Hyvärinen and Köster, 1997), decompose
a dataset into a linear mixture of sources that best match some
target property with typically little or no other prior knowledge of
the sources or mixture model. For example, independent compo-
nent analysis (ICA) is a very popular subset of BSS that relies on
independence to separate and identify sources. Performance can
vary greatly among different methods depending on how well the
data satisfies each method’s assumptions, and therefore selecting
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a proper BSS method is critical. In general, most BSS methods fall
into or are a hybrid of one of the three following categories:

ICA methods using higher-order statistics (HOS): Sources are
assumed to lack temporal, spatial, or other structure,
requiring the use of HOS (often indirectly) to maxi-
mize source independence. Common methods include
maximization of non-Gaussianity using kurtosis or
negentropy, maximum likelihood estimation, minimi-
zation of mutual information, and tensorial methods. In
almost all cases these methods optimize different meas-
ures of the same criterion (Hyvärinen et al., 2001), and as
such, they all suffer from the same inability to separate
more than one Gaussian source. The FastICA method is a
widely-used member of this group.

BSS methods using second-order statistics (SOS): Sources have
an underlying structure, allowing separation of merely
uncorrelated (not necessarily independent) sources using
SOS, such as shifted autocovariance matrices. SOS  are
more robust than HOS and allow Gaussian sources to
be separated; however, SOBI and other methods in this
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category are unable to separate sources with identical
power spectral densities (see Section 2.2).

BSS methods using nonstationarity: These methods require the
data be nonstationary and often employ SOS to decorre-
late the data at all data points (Matsuoka et al., 1995).
Aside from nonstationarity, no other common require-
ments are placed on the data.

Most BSS applications in brain imaging have been to fMRI
(Calhoun et al., 2003; McKeown et al., 1998), EEG (Vigário et al.,
2000; Onton et al., 2006), and MEG  (Vigário et al., 1998; Ikeda and
Toyama, 2000) data. As a multivariate approach that makes mini-
mal  assumptions on the underlying model, BSS is a natural choice
for exploring brain signals, which often have a complex structure
with no clear best model (Zhukov et al., 2000; Sato et al., 2001;
Jung et al., 2001). The independence forced upon ICA sources and
the decorrelation forced upon BSS sources using SOS make these
methods ideal for noise and artifact removal (Callan et al., 2001;
Vorobyov and Cichocki, 2002) and separating functional brain
networks (Calhoun et al., 2008) into subnetworks, such as the res-
ting state networks (van de Ven et al., 2004; Beckmann et al., 2005).
In applying these methods, one must choose the dimension(s)
over which to optimize source independence or decorrelation with
different applications favoring different dimensions. For example,
temporal BSS is often used on EEG data to remove heart beat arti-
facts. Similarly, spatial BSS is often used on fMRI data to identify and
remove head movement artifacts. In fact, BSS can be performed on
any dataset dimension(s), not just space or time, and extensions
to multiple dimensions, such as spatiotemporal ICA (Stone et al.,
2002), exist. Many other modifications to basic BSS have been pro-
posed; one notable example fuses EEG and fMRI data (Moosmann
et al., 2008).

One drawback of BSS is that analyses procedures do not readily
generalize to group studies. This is in contrast to many univari-
ate methods which provide a direct one-to-one correspondence
between results across subjects. Many methods have been pro-
posed to circumvent this problem, and for fMRI data alone these
methods fall into at least 5 categories (Calhoun et al., 2009):
combining single subject BSS’s (Esposito et al., 2005), temporally
concatenating (Schmithorst and Holland, 2004), spatially con-
catenating (Svensén et al., 2002), pre-averaging (Schmithorst and
Holland, 2004), and using a tensorial framework (Beckmann and
Smith, 2005). Similar to temporal concatenation, concatenating
data from subjects that have been registered to a common anatom-
ical space allows for BSS analysis of any multi-subject dataset.

SOBI is frequently used on brain data (Tang et al., 2005; Joyce
et al., 2004; Theis et al., 2004) for its ability to incorporate the
correlation structure of the data and separate multiple Gaussian
sources, which is not possible with ICA methods using HOS. Hyväri-
nen points out that ignoring such structural information may  lead
other methods to be substantially suboptimal (Hyvärinen et al.,
2001), which was recently corroborated by one study compar-
ing the performance of 22 different BSS methods on simulated
EEG data (Klemm et al., 2009). Source separation is achieved
by joint diagonalization of a set of shifted/lagged autocovari-
ance matrices computed across a single dimension, typically time.
Although application of SOBI to one-dimensional data is straight-
forward, the computation of shifted covariance matrices on the
two-dimensional cortical manifold is not. In this paper we  extend
SOBI to data on the cerebral cortex using a two-dimensional analog
of the one-dimensional shift to construct the covariance matrices.

We further propose a new way to study cortical brain networks
using BSS: structural networks of gray matter thickness, gray
matter thickness variance, and cortical curvature variance. Unlike
functional networks and diffusion anatomical networks, little
attention has been given to such networks based on the general

physical structure of the cortical surface. Thickness changes have
been implicated in brain development and aging (Sowell et al.,
2003), and pathologies of the central nervous system, such as
schizophrenia (Narr et al., 2005) and Alzheimer’s disease (Lerch
et al., 2005). Furthermore, brain networks constructed from inter-
regional gray matter thickness correlations share many pathways
in common with diffusion tensor images and manifest small-world
and modular properties consistent with functional studies (He
et al., 2007; Chen et al., 2008). Cortical folding patterns, whose
shape can be locally quantified by the curvature metric (Luders
et al., 2006), have also been associated with autism (Hardan et al.,
2004), schizophrenia (Sallet et al., 2003), and sex differences (Zilles
et al., 1997). In one recent study, cortical shape was represented
by estimates of regional joint probability density functions of an
orthogonal reparameterization of the principal curvatures (Awate
et al., 2009). Differences in these joint densities were then con-
nected to differences in type of congenital heart disease in neonates.
To our knowledge, thickness and curvature relationships have
not been previously studied with BSS, yet BSS is ideal for struc-
tural studies because they lack prior information about the signal
topographies. Here we  validate our BSS method using simulation
and identify significant structural networks in thickness and cur-
vature.

2. Materials and methods

In this section we provide a background on BSS, ICA, and the
regular SOBI approach, and then introduce our SOBI method for
the cerebral cortex.

2.1. Blind source separation (BSS)

Assume a number of source signals, denoted by si(t), i�{1, . . . ,
N}, that cannot be recorded directly and instead must be estimated
from observed signals xi(t), i�{1, . . . , N}. In the context of brain imag-
ing, si(t) could be electrical signals produced from different brain
areas, and xi(t) the recordings from sensor electrodes surrounding
the head. BSS assumes that the source signals are linearly combined
by an unknown mixing matrix A:

x(t) = As(t) (1)

where x(t) = [x1(t) x2(t) . . . xN(t)]T, s(t) = [s1(t) s2(t) . . . sN(t)]T, and
(.)T denotes the transpose operator. BSS then poses a target source
property that constrains the solution of this underdetermined
problem and allows for estimation of sources si(t), with the exclu-
sion of possible permutations and scalings of sources that cannot
be recovered. For example, in the case of ICA the target source prop-
erty is independence of all sources si(t). It should also be noted that
even though signals here are functions of time, the same analy-
sis directly extends to signals parameterized by space or another
index.

Most BSS methods begin by prewhitening the observed data
xi(t), which simplifies the estimation of the sources. Define the
source time-lagged covariance matrix as Cs(�) = E{s(t)s*(t − �)}
with (.)* indicating the conjugate transpose operator. Sources si(t)
are uncorrelated and, without loss of generality, can be assumed
to have zero mean and unit variance. Therefore, Cs(0) = I and
Cs(�) = D� , where I is the N × N identity matrix and D� is a diagonal
matrix. In the whitened space, the model in Eq. (1) becomes

z(t) = WAs(t) (2)

where the whitened signals zi(t) compose z(t), W is the whiten-
ing operator, and Cz(0) = I. Computing the 0-lagged covariance
from Eq. (2) gives

I = WAA∗W∗ (3)
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