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This review gives a short historical account of the excitable maps approach for modeling neurons and
neuronal networks. Some early models, due to Pasemann (1993), Chialvo (1995) and Kinouchi and
Tragtenberg (1996), are compared with more recent proposals by Rulkov (2002) and Izhikevich (2003).
We also review map-based schemes for electrical and chemical synapses and some recent findings

as critical avalanches in map-based neural networks. We conclude with suggestions for further work
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in this area like more efficient maps, compartmental modeling and close dynamical comparison with
conductance-based models.
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1. Introduction

The number of neurons in the human brain (86 billions (Azevedo
et al., 2009)) is nearly six times the number of trees in Amazonia.
So, brain modelers must not forget that their job is comparable to
modeling patches of Amazonia, a staggering task. Since well devel-
oped models for single neurons already exist (Bower and Beeman,
2003; Carnevale and Hines, 2006), with complex dendritic geome-
try and tens of equations and parameters (Dayan and Abbott, 2001),
it is not obvious what modeling level we should use in general.

As the proverbial forest not seen because of the trees, the
detailed study of singular neurons is an interesting subject per
se, but it is perhaps not necessary to understand the macroscopic
dynamics and function of neuronal networks. Indeed, neuronal
networks present collective phenomena, like synchronization
(Ibarz et al., 2011), waves (Cross and Hohenberg, 1993; Gua et al.,
2013; Wua et al., 2013) and avalanches (Chialvo, 2010). The history
of neuronal networks modeling is marked by this trade-off between
analytical/computational tractability and biological realism.

Since the connection between neurons is only sensitive to the
action potentials that arrive at (electrical or chemical) synapses, the
important thing is to model the dynamics of these action potentials
(their frequency or inter-spike intervals, if they come in bursts or
single events, etc.). The emphasis in modeling the transmembrane
voltage dynamical behavior is called a phenomenological approach
(in contrast to a mechanistic or biophysical approach), leading to a
class of neuron models where map-based neurons are a new and
promising tool. This paper gives a brief account of the pioneering
proposals of neuronal maps due to Chialvo (1995), Pasemann (1993,
1997), Kinouchi and Tragtenberg (1996) and Kuva et al. (2001)
and compare them with more recent proposals due to Rulkov
(2001, 2002) and Izhikevich (2003), Izhikevich and Hoppensteadt
(2004).

There are two main routes to achieve map-based neuron
models with realistic dynamical properties. The first one is to
start from Hodgkin—-Huxley (HH) type models, composed by cou-
pled nonlinear ordinary differential equations (ODE) which are
already a simplification (due to spatial discretization) of full partial
differential equations that describe the neuron membrane. Com-
putational neuroscience models based on the HH formalism, called
conductance-based neurons, is a well developed subject (Dayan
and Abbott, 2001), but suffers from some limitations (de Schutter,
2010):

¢ The HH-type models consist in several nonlinear coupled ODEs:
the simulation of a single neuron is orders of magnitude more
costly than simplified neuron models;

The biophysical data for constraining the parameter values (like
capacitances, axial resistances, density of ion channels, etc.) is
scarce and often obtained from diverse preparations (different
animals, in vitro experiments, etc.). Most of the parameter ranges
used in simulations are simply informed guesses.

¢ The remaining parameter space of these models is huge and suffer
from the so called curse of dimensionality (Bellman, 2003). It is
very costly to trace full phase diagrams, since with P parameters,
for example, we can have P(P — 1)/2 parameter planes. The mini-
mal model of Hodgkin—-Huxley, with only two active ion channels,
has at least P=40 parameters (Dayan and Abbott, 2001).

The set of parameters to be used for reproducing a given firing
pattern is subdetermined. This means that the same dynami-
cal behavior can be achieved by different sets of parameters.
Adjusting these parameters to the known neuron behavior is sus-
ceptible of overfitting: the model reproduces the given data but
donotgeneralizes well, for example, for different input situations.

In order to deal with these drawbacks, we may opt to repro-
duce the dynamical behavior of neurons instead of reproducing the
involved biophysical mechanisms (mechanistic modeling). Starting
from a complicated HH-model, perhaps even a multicompartmen-
tal model, we can perform a sequence of simplifications more or less
justified in order to obtain simpler models with fewer equations
and lumped parameters (de Schutter, 2010). Examples of these
reduced ODE based models are the FitzHugh-Nagumo excitable
neuron (FitzHugh, 1955; Nagumo et al., 1962), the Hindmarsh-Rose
bursting neuron (Hindmarsh and Rose, 1984) and the Izhikevitch
model (Izhikevich, 2003). If we numerically integrate these ODEs
with the Euler method with a large time step, we can arrive at maps
with similar dynamical properties as the original systems (Rulkov,
2002; Izhikevich, 2004).

Phenomenological modeling can start the other way around.
This occurs because the phenomena to be studied set the level
of modeling. Continuing with our forest modeling analogy, if our
interest is to study a single tree (or neuron), a biophysical HH-like
modeling is desirable. But if we want to understand, say, the propa-
gation of a forest fire, the modeling of the tree biophysics is mostly
immaterial, and trees could be represented by sites with two states
(0=normal, 1=burnt) (Christensen et al., 1993). In the same vein,
McCulloch and Pitts (1943) proposed a binary threshold neuron,
whose state is given by 0=rest and 1 =firing. With this method,
one starts with discrete time systems and searches for increas-
ing complexity until a dynamical model that reproduces the full
phenomenology of neuronal dynamics is achieved.

Both approaches tend to converge at a middle ground formal-
ism: dynamical systems with discrete space and discrete time, but
with continuous state variables, that is, dynamical maps (Ibarz
et al., 2011). Neuronal networks composed by these maps will be
an instance of coupled maps lattices (CMLs) (Kaneko, 1993, 1994).
In this paper, we review the early proposals of map-based neu-
ron models and the coupling schemes used to create such coupled
maps networks. We also suggest some unexplored research topics
that could be examined both with conductance-based neurons and
map-based neurons, in order to stimulate computational neurosci-
entists to use both approaches in a synergetic way.

This review is intended to organize the map-based neuron
models in sequential time (Section 2), highlighting two families
of map-based modeling: (I) back from McCulloch and Pitts (1943)
approach to the Kinouchi and Tragtenberg (1996) and its exten-
sion (Kuva et al., 2001) and (II) back from Chialvo (1995) to Rulkov
(2002) and Izhikevich (2003). Then, we perform a short compu-
tational comparison of the main neuronal models (Section 3). The
main purpose of Section4 is to neatly list the most relevant cou-
plings which may be used to link maps into networks, only pointing
to the most prominent results obtained with them. We finally ter-
minate the review with some important remarks in Section 5.

2. History of map-based neurons

This section is devoted to draw a line which connects the early
modeling of neurons, as state machines, to the most recent and
powerful models, which are dynamical systems on their own, pre-
senting their most relevant features and reviewing some models
that are still not well known, although they have been used recently
to model neural networks.

The generalized mathematical form of any map is:

X(t+1) = F(X(t)), (1)

where F:R" — R" is any vector function and we are assuming
that the curve given by the set of values {X(O),X(l),X(Z), .. }
defines the temporal evolution the system. In the case of neurons,
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