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� DFA  is  often  used  to  estimate  the  scaling  exponent  of  neurophysiological  signals.
� We  extend  DFA  to characterise  potentially  changing  scaling  exponents.
� We validate  the  method  using  surrogate  data  with  time-varying  scaling  exponents.
� We  systematically  examine  the  dependence  of the  method  on  its  free  parameters.
� We  demonstrate  the  applicability  of  the  method  to  neurophysiological  signals.
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a  b  s  t  r  a  c  t

Detrended  fluctuation  analysis  (DFA)  is  a technique  commonly  used  to  assess  and  quantify  the  pres-
ence  of  long-range  temporal  correlations  (LRTCs)  in neurophysiological  time  series.  Convergence  of  the
method  is  asymptotic  only  and  therefore  its  application  assumes  a constant  scaling  exponent.  However,
most  neurophysiological  data  are  likely  to involve  either  spontaneous  or experimentally  induced  scaling
exponent  changes.  We  present  a novel  extension  of the  DFA  method  that permits  the  characterisation
of  time-varying  scaling  exponents.  The  effectiveness  of the  methodology  in recovering  known  changes
in  scaling  exponents  is  demonstrated  through  its application  to synthetic  data.  The  dependence  of  the
method  on  its  free  parameters  is systematically  explored.  Finally,  application  of  the  methodology  to
neurophysiological  data  demonstrates  that  it provides  experimenters  with  a way  to identify  previously
un-recognised  changes  in  the  scaling  exponent  in the data.  We  suggest  that  this  methodology  will  make
it  possible  to  go  beyond  a simple  demonstration  of  the  presence  of scaling  to  an  appreciation  of  how  it
may  vary  in  response  to either  intrinsic  changes  or experimental  perturbations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Neurophysiological processes are interaction dominated such
that the operation of one component of the system closely depends
on the state of another component. In contrast to systems dom-
inated by additive and subtractive interactions, which produce
distributions characterised by Gaussian statistics, neuronal activ-
ity is characterised by multiplicative interactions that can produce
heavy-tailed distributions including power law distributions (Kello
et al., 2010).

It has now been established that many neurophysiological sig-
nals show power law distributions of their autocovariance function,
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i.e., they exhibit long-range temporal correlations (LRTCs). These
LRTCs have been observed in fluctuations of amplitudes (e.g.,
Linkenkaer-Hansen et al., 2001, 2004; Nikulin and Brismar, 2005;
Berthouze et al., 2010) and inter-event intervals (Hartley et al.,
2012). The detection and characterisation of LRTCs in neurophys-
iological data has received great attention in part due to the fact
that LRTCs are a (necessary, but not sufficient) signature of criti-
cal systems. The idea that the brain may  be operating in a critical
regime is very attractive (Chialvo, 2010) because critical systems
have been shown to maximise their dynamic range of process-
ing (Kinouchi and Copelli, 2006; Shew et al., 2009; Buckley and
Nowotny, 2011), and implement balanced activity (Benayoun et al.,
2010; Magnasco et al., 2009; Meisel and Gross, 2009). In their semi-
nal work, Linkenkaer-Hansen et al. (2001) interpreted the presence
of LRTCs in the fluctuations of EEG and MEG  amplitude oscilla-
tions within the framework of criticality in which once LRTCs are
established, the scaling exponent would be expected to be con-
stant throughout a normal resting state neurophysiological record.
From the perspective of criticality (in its physics sense of the term),
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such an assumption may  be justified. However, there is an alterna-
tive view which is that heavy-tailed distributions (including power
laws) could also be observed as the result of the superposition of
processes with distinct time scales (Wagenmakers et al., 2004),
or as a result of measurements (Touboul and Destexhe, 2010). In
this view, the validity of the assumption that the scaling exponent
is constant throughout a neurophysiological recording should be
firmly established because the overall organisation of these differ-
ent time scales may  no longer result from a global order parameter.
We suggest that any exponent estimation method should be agnos-
tic to the origin of the LRTCs and instead focus on providing a robust
estimation of exponent magnitude over small enough time scales
within which exponent magnitude fluctuations if present can be
observed.

Furthermore, LRTCs in neurophysiological time series have been
characterised using estimates of the Hurst exponent which quan-
tifies the slope of the auto-covariance function of the signal, with
exponents in the interval (0.5,1] denoting the presence of LRTCs.
These estimates can be obtained using several methodologies, see
Taqqu and Teverovsky (1995) and Serinaldi (2010) for comprehen-
sive comparative reviews of methods operating in both time and
frequency domains, including detrended fluctuation analysis (DFA,
Peng et al., 1994). These methodologies estimate the statistical
properties of the data under the implicit assumption of constancy
of the scaling properties of the signal. Therefore, they are by defi-
nition insensitive to any within time series change in the exponent
magnitude that characterises LRTCs.

In the case of DFA, which has been extensively used in the neuro-
physiology literature, if the changes are small enough, the scaling
property of the detrended fluctuations can be maintained (based
on the R2 value of the linear regression being greater than a given
threshold, typically 0.95) and therefore the method, as commonly
implemented in published reports, will return valid exponents
without any indication that the assumption of scaling exponent
constancy has been violated. Only close inspection or a more robust
test of the distribution of the fluctuations in the log–log scale could
provide an indication of superposition of processes (Chen et al.,
2002; Hu et al., 2001).

To date, there have been a few attempts to track changes in
the scaling parameter and these attempts have relied on a rolling
implementation of standard DFA methodologies over moving win-
dows (e.g., Alvarez-Ramirez et al., 2008; Peña et al., 2009; Yue et al.,
2010). This approach does not involve optimal filtering and has not
been validated against time series in which the magnitude of the
scaling exponent is systematically manipulated within the record.
Further, this approach when applied to non-physiological time-
series has been shown to lead to erratic behaviour in the estimates
of the scaling exponent (Alvarez-Ramirez et al., 2008; Peña et al.,
2009).

Here, we present a novel extension of the detrended fluctua-
tion analysis method (adaptive time-varying detrended fluctuation
analysis – ATvDFA) which permits the robust characterisation of
time-varying scaling parameters. We  systematically compare the
ATvDFA method with a moving windows DFA using synthetic data
and demonstrate its applicability within 3 different types of neu-
rophysiological time series.

2. Material and methods

2.1. Method formulation

The core component of the method is detrended fluctuation
analysis, and it is briefly summarised here. We  assume a bounded

time series x(i), where i = {1, . . .,  N}, and N is the length of the signal.
First, we  construct the integrated signal y(i) as the cumulated sum:

y(i) =
i∑

j=1

(x(i) − x) (1)

We then construct a set of box sizes s(k) with k = {1, . . .,  n} that
are equidistant in logarithmic space where n is suitably large to
provide enough resolution in the interval [s(1), s(n)], with s(1) and
s(n) the inner and outer cut-offs, chosen to maximise the range of
temporal correlations whilst providing a sufficiently high number
of non-overlapping segments for all box size (Peng et al., 1994). For
each box size s(k), the integrated signal is then split into �N/s(k)�
non-overlapping segments, where �x� denotes the largest integer
not greater than x. The signal is then locally detrended by subtract-
ing a polynomial fit ŷ(i). Finally, for each box size s(k), the root mean
square fluctuation for the detrended integrated signal is computed:

F(s(k)) =

√√√√ N∑
i=1

(y(i) − ŷ(i))2 (2)

For signals with long-range temporal correlations, there is a
power-law relationship between the root mean square fluctuation
F(s(k)) and s(k):

F(s(k)) ≈ s(k)˛ (3)

where  ̨ is the scaling exponent and is readily obtained by linear
regression of the log detrended fluctuations over the log box sizes.
The exponent is accepted if the R2 value is sufficiently high (typi-
cally >0.95) and there is no cross-over in the linear scaling of the log
detrended fluctuations in relation to the log box sizes (Chen et al.,
2002). Convergence of the method is asymptotic only in the limit
of N, the number of samples (Bardet, 2008; Taqqu and Teverovsky,
1995), and therefore the recommended practice is that it should
be applied to lengthy time series under the implicit assumption
of a constant scaling exponent. However, it has been recently sug-
gested that robust estimates can be obtained even with extremely
short time series, especially if the data have genuine long-range
correlations (Crevecoeur et al., 2010).

The simplest solution to the problem of detecting changes would
be to compute DFA within a moving window (we will refer to this
method as mDFA henceforth). Such an approach has been used with
non-physiological data previously but leads to considerable statis-
tical variation in the estimates of the scaling exponent (Peña et al.,
2009). For short time-series, the application of linear regression of
the log fluctuations over the log box size does not lead to a robust
estimate of the exponent because of the violation of homoscedas-
ticity, i.e., the fact that the variance in the fluctuations at each box
is not identical for all box sizes. Here, we address this problem
through the application of a Kalman filter, a data-adaptive filter-
ing procedure, in order to track exponent estimates obtained from
overlapping data segments.

A Kalman filter operates over a state-space model, with state
and measurement equations given by

xk+1 = �kxk + wk (4)

zk+1 = Hkxk + vk (5)

where xk and zk are the state and measurement vectors, �k is the
state transition matrix, Hk is the state-to-measurement matrix, and
wk and vk are the process and measurement noise sources respec-
tively. Here, we define the state as the parameters of the linear
regression of the log detrended fluctuations log F(s(k))k={1,. . .,n} over
the log box sizes log s(k)k={1,. . .,n}. The state vector xk is therefore
defined as the 2 × 1 column vector xk = [u1, u2] where u1 is the
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