
Science of Computer Programming 74 (2009) 143–165

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A general technique for proving lock-freedom
Robert Colvin ∗, Brijesh Dongol
ARC Centre for Complex Systems, School of Information Technology and Electrical Engineering, The University of Queensland, Australia

a r t i c l e i n f o

Article history:
Received 14 May 2008
Received in revised form 29 August 2008
Accepted 22 September 2008
Available online 1 October 2008

Keywords:
Lock-free programs
Concurrency
Verification
Temporal logic

a b s t r a c t

Lock-freedom is a property of concurrent programs which states that, from any state of
the program, eventually some process will complete its operation. Lock-freedom is a
weaker property than the usual expectation that eventually all processes will complete
their operations. By weakening their completion guarantees, lock-free programs increase
the potential for parallelism, and hence make more efficient use of multiprocessor
architectures than lock-based algorithms. However, lock-free algorithms, and reasoning
about them, are considerably more complex.
In this paper we present a technique for proving that a program is lock-free. The

technique is designed to be as general as possible and is guided by heuristics that
simplify the proofs.We demonstrate our theory by proving lock-freedomof two non-trivial
examples from the literature. The proofs have been machine-checked by the PVS theorem
prover, and we have developed proof strategies to minimise user interaction.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Lock-freedom is a progress property of non-blocking concurrent programs which ensures that the system as a whole
makes progress, even if some processes never make progress [14,15,8]. Lock-free programs tend to be more efficient than
their lock-based counterparts because the potential for parallelism is increased [15]. However, compared to lock-based
implementations, lock-free programs are more complex [15,12], and can be error-prone (see, e.g., [3] for discussion on an
incorrect published algorithm). Although formal safety proofs for lock-free algorithms exist [7,3,4], formal proofs of progress
have mostly been ignored.
Our definition of lock-freedom is based on a literature survey and formal definition given by Dongol [8] and states

that from any state of the program, eventually some process executes the final line of code of its operation, i.e., executes
a completing action. The initial step in proving this property is to identify a set of progress actions (which includes the
completing actions), and prove that if eventually some process executes a progress action, it follows that eventually some
process will execute a completing action. Having widened the set of actions of interest, we augment the program with an
auxiliary variable which detects the execution of progress actions. We use this variable to construct a well-founded relation
on states of the program, such that every transition of the program results in an improvement with respect to the relation,
or is the execution of a progress action.
The steps outlined above are guided by heuristics, and in particular by inspection of the control-flow graphs of the

program. The final step involves case analysis on the actions of the system and only requires simple propositional reasoning.
The proofs are supported by the theorem prover PVS: we provide a theory for showing that the relations are well-founded,
and strategies for minimising user interaction in the case analysis.

Overview. This paper is organised as follows. In Section 2 we present the theoretical background to the rest of the paper.
In Section 3wepresent the technique and apply it to a running example, theMichael & Scott lock-free queue [15]. In Section 4

∗ Corresponding author.
E-mail addresses: robert@itee.uq.edu.au (R. Colvin), brijesh@itee.uq.edu.au (B. Dongol).

0167-6423/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2008.09.013

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:robert@itee.uq.edu.au
mailto:brijesh@itee.uq.edu.au
http://dx.doi.org/10.1016/j.scico.2008.09.013


144 R. Colvin, B. Dongol / Science of Computer Programming 74 (2009) 143–165

Fig. 1. Typical structure of lock-free algorithms.

we apply the technique to a more complex example, a bounded array-based queue [3]. In Section 5 we describe how the
proofs can be checked using the PVS theorem prover [18], using a number of strategies for guiding the proofs to minimise
user interaction. We conclude and discuss related work in Section 6.

2. Preliminaries

We describe the programming model and the general structure of a lock-free program in Section 2.1; provide the lock-
free queue by Michael and Scott as a concrete example in Section 2.2; briefly review well-founded relations in Section 2.3;
and describe transition systems, trace-based reasoning and temporal logic in Section 2.4.

2.1. Lock-free programs

The general structure of a lock-free program is summarised by the program,P , in Fig. 1, whereP is formed by a finite set
of parallel processes, procs(P ), that execute operations fromOP(P ). Each process p selects some operation op for execution.
After op completes, pmakes another selection, and so on. This form ofP is an abstraction of a real lock-free program, where
processes are likely to perform other functions between calls to operations in P . We assume that functions external to P
do not alter its variables, and hence may be ignored for the purposes of defining P . We say a process is idle if the process
is not executing any operation, i.e., is between calls to operations. Note that because each process continually chooses new
operations for execution, each execution of P is infinite in length.
Each operation op ∈ OP(P ) is of the form described in Fig. 1. They are sequential non-blocking statements, i.e., no atomic

statement of op exhibits blocking behaviour. The main part of the operation occurs in op.Loop, which is a potentially infinite
retry-loop. Given that op.Loopmodifies shared data G, the typical structure of op.Loop is to take a snapshot of G, construct
a new value for G locally, then attempt to update G to this new value. If no interference has occurred, i.e., G has not been
modified (by a different process) since the snapshot was taken, op.Loop terminates, whereas if interference has occurred
op.Loop is retried. Because op.Loop is retried based on interference from external sources, a loop variant, for proving loop
termination in the traditional way, cannot be derived.
An operation opmay also require some pre- and post-processing tasks to op.Loop, as given by op.preLoop and op.postLoop.

Both op.preLoop and op.postLoop are assumed not to contain potentially infinite loops. Note that op.preLoop and op.postLoop
may be empty for some operations. Because op.Loopmay contain multiple exit points, there could be multiple control flows
within op.postLoop, i.e., the structure in Fig. 1 is simplified for descriptive purposes.
Within an operation, each atomic statement has a unique label, and each process p has a program counter, denoted pcp,

whose value is the label of the next statement pwill execute. We assume the existence of a special label idle to identify idle
processes. We use PC(P ) to denote the set of all labels in the program (including idle).
Lock-free programs are typically implemented using hardware primitives such as Compare-and-Swap (CAS), which

combines a test andupdate of a variablewithin a single atomic statement. A procedure callCAS(G, ss, n) operates as follows:
if (shared) variable G is the same as (snapshot) variable ss, then G is updated to the value of n and true is returned; otherwise
no update occurs and false is returned. CAS instructions are available on many current architectures, including x86.

CAS(G, ss, n) =̂ if G = ss
then G := n ; return true
else return false

CAS-based implementations can suffer from the ‘‘ABA problem’’ [15], which can be manifested in the following way. A
process p takes a snapshot, say ssp, of the shared variable Gwhen G’s value is A; then another process modifies G to B, then
back again to A. Process p has been interfered with, but the CAS that compares G and ssp cannot detect the modification
to G because G = ssp holds after the interference has taken place. If value A is a pointer, this is a potentially fatal problem
because the contents of the location pointed to by Amay have changed. Awork-around is to store amodification counter with
each shared variable, which is incremented whenever the variable is modified. If the modification counter is also atomically
compared when executing the CAS, any interference will be detected. As discussed by Michael and Scott [15], modification
counters do not constitute a full solution to the ABAproblem in a real systembecausemodification counterswill be bounded.
However, in practice, the likelihood of the ABA problem occurring is reduced to a tolerably small level [17].

2.2. Example: The Michael and Scott queue

To understand how typical lock-free operations are implemented, consider the program MSQ in Fig. 2, which is the
lock-free queue algorithm presented by Michael and Scott [15]. The algorithm is used as the basis of the implementation



Download English Version:

https://daneshyari.com/en/article/433517

Download Persian Version:

https://daneshyari.com/article/433517

Daneshyari.com

https://daneshyari.com/en/article/433517
https://daneshyari.com/article/433517
https://daneshyari.com

