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a  b  s  t  r  a  c  t

Different  analysis  methods  have  been  developed  for assessing  motor-equivalent  organization  of  move-
ment  variability.  In the  uncontrolled  manifold  (UCM)  method,  the  structure  of  variability  is analyzed  by
comparing  goal-equivalent  and  non-goal-equivalent  variability  components  at  the  level  of  elemental
variables  (e.g.,  joint  angles).  In contrast,  in  the  covariation  by randomization  (CR)  approach,  motor-
equivalent  organization  is  assessed  by  comparing  variability  at  the  task  level  between  empirical  and
decorrelated  surrogate  data.  UCM  effects  can be  due to  both  covariation  among  elemental  variables  and
selective channeling  of  variability  to  elemental  variables  with  low  task  sensitivity  (“individual  varia-
tion”),  suggesting  a  link  between  the UCM  and CR  method.  However,  the  precise  relationship  between
the  notion  of  covariation  in the  two approaches  has  not  been  analyzed  in  detail  yet.

Analysis  of empirical  and simulated  data  from  a study  on  manual  pointing  shows  that  in general  the  two
approaches  are  not  equivalent,  but  the  respective  covariation  measures  are  highly  correlated  (�  > 0.7)  for
two proposed  definitions  of  covariation  in  the UCM  context.  For  one-dimensional  task  spaces,  a  formal
comparison  is  possible  and  in fact the  two  notions  of  covariation  are  equivalent.  In situations  in which
individual  variation  does  not  contribute  to UCM  effects,  for which  necessary  and  sufficient  conditions  are
derived,  this  entails  the  equivalence  of the  UCM  and  CR  analysis.  Implications  for  the  interpretation  of
UCM effects  are  discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It has been proposed that successful performance of motor
tasks involving abundant degrees of freedom (DOF) depends on
motor-equivalent organization of movement variability (Schöner,
1995; Todorov and Jordan, 2002; Latash et al., 2007). The notion
of motor equivalence refers to the fact that a particular state of
a task variable (e.g., position of an end-effector) can be achieved
by a variety of configurations of elemental variables (e.g., joint
angles). The present paper compares two quantitative methods that
allow analyzing the use of motor-equivalence in functional tasks,
the uncontrolled manifold (UCM) and the covariation by random-
ization (CR) method. Both approaches require the definition of a
forward model, i.e. a mapping from elemental to task variables,
which relates fluctuations in elemental variables to fluctuations in
the task variable.

In the uncontrolled manifold analysis (Scholz and Schöner,
1999), variability in elemental variables is decomposed into goal-
equivalent and non-goal-equivalent variability components (GEV
and NGEV) with respect to hypothesized task variables. The decom-
position of variability is achieved by linearizing the forward model.
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GEV and NGEV are normalized with respect to the number of DOF. A
task variable is controlled (stabilized) in the UCM sense, when GEV
exceeds NGEV. UCM effects can be quantified by using a derived
measure, e.g., the ratio between GEV and NGEV, or the normalized
difference (Latash et al., 2007). It has been noted that comparisons
between different conditions or task variables should not be based
on the variability structure of elemental variables alone, but should
also assess potential differences in the mapping from elemental to
task variables (Cusumano and Cesari, 2006; de Freitas et al., 2010).

In contrast to the UCM analysis, the covariation by ran-
domization (CR) approach (Müller and Sternad, 2003) assesses
motor-equivalent organization by comparing variability in task
space, between empirical and “decorrelated” surrogate data. Decor-
relation can be achieved by randomly permuting the elemental
variables across samples, thereby removing all possible covariation
among them, and then applying the forward model to deter-
mine the corresponding variability in task space. Alternatively, for
(approximately) linear forward models, the effect of decorrelation
can also be analyzed by setting certain entries of the covariance
matrix of the elemental variables to zero (Yen and Chang, 2010;
Verrel et al., 2010b).  Covariation is present when task variability
is higher for decorrelated than for empirical variability. A covari-
ation index can be defined as the ratio between decorrelated and
empirical variability.
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Thus, the UCM and CR approach address a similar question with
different means (Schöner and Scholz, 2007). Recently, it has been
noted that UCM effects can be due to both covariation (in the CR
sense) and “individual variation”, i.e. unequal variance distribu-
tion in elemental variables (Schöner and Scholz, 2007; Yen and
Chang, 2010). Yen and Chang (2010) proposed a way of separating
these two contributions of UCM effects. However, the relationship
between the UCM and CR analysis remains insufficiently under-
stood. After briefly introducing the UCM and CR analysis, I discuss
different measures of covariation in the UCM context. For one-
dimensional task spaces (representing a substantial proportion of
published studies using either the CR or UCM method), a formal
comparison of covariation criteria in the UCM and CR context is pos-
sible. For higher-dimensional task spaces, this equivalence between
the two methods does not hold in general. The formal analysis is
illustrated by empirical and simulated data for one-dimensional
and three-dimensional task spaces.

2. Formal analysis

2.1. Forward model

Both the UCM and the CR analysis are based on a forward model
f : E → T, mapping elemental variables (represented in E) to task
variables (represented in T). Each point in E represents one config-
uration of elemental variables, such as a posture defined in terms
of joint angles, or a muscle activation pattern represented as a
superposition of muscle “modes” (Latash et al., 2007). In general,
E and T are finite-dimensional manifolds. However, variability in
both elemental and task variables is typically small, allowing to
choose local linear representations of E and T (as vector spaces)
and to approximate f by its Jacobian J = Df.  If E is n-dimensional and
T is d-dimensional, J is a d × n matrix of rank d, (provided f is non-
degenerate). A given small deviation in elemental variables e ∈ E is
mapped to a deviation in task space Je ∈ T.

Let ei ∈ E, i = 1, . . .,  N denote the fluctuations (deviations from
their mean) in the observed data sample of size N. By a change of
coordinate system, one can assume that mean(ei) = 0 and f(0) = 0.
Using the linear approximation and after coordinate change, one
obtains

f (e) = Je + O(‖e‖2),

where O(||e||2) indicates that the non-linearity is bounded above by
a constant multiple of ||e||2 for ||e|| close to zero. The UCM analysis is
based on this linear approximation. The CR analysis is in principle
possible for arbitrary forward models. However, for small fluctu-
ations in elemental variables and forward models that are locally
well linearly approximated, the computational requirements of the
CR analysis can be greatly reduced by using the approximation.

2.2. Uncontrolled manifold (UCM)

In the UCM analysis, the total variability (TOTV) in E is decom-
posed into GEV and NGEV by projecting the deviations ei to the
null-space of J, and its orthogonal complement, respectively. These
projections are null(J)t and orth(Jt)

t
, where, for a matrix M,  orth(M)

and null(M)  denote matrices whose column vectors form orthonor-
mal  bases for the range and null space of M.

Yen and Chang (2010) provided an elegant computation for the
variability components in the UCM analysis, based on the covari-
ance matrix C of the ei:

TOTV = trace(C)
n

, (1)

NGEV = trace(orth(Jt)
t · C · orth(Jt))
d

,  (2)

GEV = trace(null(J)t · C · null(J))
n − d

. (3)

For consistency with the original UCM analysis, the biased
covariance matrix is used (normalized by N rather than N − 1).
It is important to emphasize that each of these components is
normalized by the number of DOF. In particular TOTV is not the
(unnormalized) total variance but the total variance per DOF, and
it is not the arithmetic sum of GEV and NGEV. Instead, the following
equation follows from the normalization:

nTOTV = dNGEV + (n − d)GEV. (4)

By definition (Latash et al., 2007; Scholz and Schöner, 1999), a
UCM-effect is present when any of the following equivalent condi-
tions is satisfied

GEV > NGEV ⇔ GEV > TOTV
⇔ NGEV < TOTV.

(5)

The equivalence of these conditions follows from Eq. (4).
The following two  measures have been proposed to quantify

UCM effects (e.g., Latash et al., 2007):

S = GEV
NGEV

, (6)

T = GEV − NGEV
TOTV

= nTOTV − nNGEV
(n − d)TOTV

(7)

(the last equality follows by solving Eq. (4) for GEV and inserting it
in the definition of T).

Following Eq. (5),  a UCM effects is present when the following
conditions hold for S and T:

S > 1 ⇔ T > 0. (8)

2.3. Covariation by randomization (CR)

In the covariation by randomization (CR) analysis (Müller and
Sternad, 2003), elemental variables are randomly permuted across
samples to produce (approximately) covariation-free data (Müller
and Sternad, 2003). If the given sample ei ∈ E has components

ei = (eij) with i = 1, . . . , N, j = 1, . . . , n,

a randomized sample is defined as

e�
i = (e�j(i),j) with i = 1, . . . , N, j = 1, . . . , n,

where � is an n-tuple of permutations on N elements,

� = (�j) with �j ∈ ˙N, j = 1, . . . , n.

Task variability for empirical and decorrelated data is defined
using the forward model

TV = var(f (ei)), (9)

TV� = var(f (e�
i )), (10)

where var denotes the ordinary variance for one-dimensional
task spaces, and the trace of the covariance matrix for higher-
dimensional task spaces. By averaging TV� over many repetitions
of the randomization procedure (with different choices of �), task
variability for covariation-free data can be estimated. Note that
replicability of this procedure is compromised by the (necessary)
choice of random permutations.

Alternatively, when f is locally linear, task variability can be
computed from the covariance matrix C = cov(ei):

TV = var(Jei) = trace(cov(Jei)) = trace(JCJt). (11)
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