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a  b  s  t  r  a  c  t

Granger  causality  (G-causality)  is  increasingly  employed  as  a method  for  identifying  directed  functional
connectivity  in  neural  time  series  data.  However,  little  attention  has  been  paid  to the  influence  of common
preprocessing  methods  such  as  filtering  on  G-causality  inference.  Filtering  is  often  used  to  remove  arti-
facts  from  data  and/or  to isolate  frequency  bands  of  interest.  Here,  we show  [following  Geweke  (1982)]
that  G-causality  for a stationary  vector  autoregressive  (VAR)  process  is  fully  invariant  under  the  appli-
cation  of  an  arbitrary  invertible  filter;  therefore  filtering  cannot  and  does  not  isolate  frequency-specific
G-causal  inferences.  We  describe  and  illustrate  a  simple  alternative:  integration  of  frequency  domain
(spectral)  G-causality  over  the appropriate  frequencies  (“band  limited  G-causality”).  We  then  show,  using
an  analytically  solvable  minimal  model,  that  in  practice  G-causality  inferences  often  do  change  after  fil-
tering, as  a consequence  of  large  increases  in empirical  model  order  induced  by  filtering.  Finally,  we
demonstrate  a valid  application  of  filtering  in  removing  a  nonstationary  (“line  noise”)  component  from
data.  In  summary,  when  applied  carefully,  filtering  can  be  a useful  preprocessing  step  for  removing  arti-
facts  and  for  furnishing  or improving  stationarity;  however  filtering  is  inappropriate  for  isolating  causal
influences  within  specific  frequency  bands.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A key theme in contemporary neuroscience is to move from
localisation of function to characterisation of functional networks.
In particular, analysis methods aimed at extracting directed func-
tional (i.e., causal) connectivity from neural signals are increasingly
in demand.1 G-causality analysis is widely employed to identify
causal connectivity in neural time series data. G-causality is a statis-
tical measure of causality based on precedence and predictability.
Put simply, if a variable A contains information that helps pre-
dict another variable B, better than can be done knowing only

Abbreviations: G-causality, Granger causality; iid, identically and independently
distributed; MVGC, multivariate Granger causality; VAR, vector autoregressive;
VMA, vector moving average; VARMA, vector autoregressive moving average; FIR,
finite impulse response; IIR, infinite impulse response; OLS, ordinary least squares;
AIC, Akaike information criterion; BIC, Bayesian information criterion; CV, cross-
validation; EEG, electroencephalography; MEG, magnetoencephalography; fMRI,
functional magnetic resonance imaging; BOLD, blood oxygen level dependent; HRF,
hemodynamic response function; DTF, directed transfer function; PDC, partially
directed coherence.
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(A.K. Seth).
1 We  prefer the term causal connectivity, a description of the data, to effective

connectivity,  which implies a model of the underlying mechanism; see Bressler and
Seth (2011).

the past of B itself, then A is said to “G-cause” B. The concept
has typically been operationalised in the context of linear VAR
models and its uptake within neuroscience has been facilitated
by the appearance of dedicated software toolboxes implementing
the methods (Seth, 2010; Cui et al., 2008). However, the interac-
tion of G-causality with standard data preprocessing procedures is
not well understood and presents a possibly serious confound to
many applications. In this paper, we  focus on the effects of (tempo-
ral) filtering on G-causality. This is a crucial issue since filtering is
often applied semi-automatically as a preprocessing step in many
analyses. Most applications of filtering attempt to achieve one (or
both) of two  objectives: (i) removal of artifacts such as electrical line
noise and (non-neural) physiological influences, and (ii) isolation
of effects within a specific frequency band [e.g., the beta or gamma
ranges in M/EEG (Pollonini et al., 2010; Wilson and Yan, 2010)].
Anticipating our results, we  show that G-causality is theoretically
invariant under the application of arbitrary (invertible) multivari-
ate filters, and so cannot achieve the second objective. However,
the invariance holds strictly for stationary data—stationarity being a
prerequisite for G-causality analysis—so that filtering can be useful
for artifact removal if it is able to render a previously nonstationary
time series stationary. In practice, filtering can pose challenges for
the effective estimation of the autoregressive models on which G-
causality is based, hence the need for its careful application in the
context of achieving or improving stationarity. Although our analy-
sis is targeted at “explicit” filtering imposed by an experimenter as
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a data (pre)processing stage, our results may  also have implications
for “implicit” filtering that may  arise as a result of physiological pro-
cesses intervening between neural variables and observables, for
example as manifest in the hemodynamic BOLD signal measured
using fMRI.

In his seminal 1982 paper Geweke (1982) noted, but did not
justify or explore, the invariance of G-causality under filtering via
the somewhat oblique aside “[G-causality] is invariant with respect
to scaling of X and Y; in fact it remains unchanged if X and Y
are pre-multiplied by different invertible lag operators.” Perhaps
because there is no explicit reference to “filtering” this note appears
to have been overlooked as G-causality has been taken up within
neuroscience. More recently, researchers have worried that filter-
ing does in fact affect G-causality (Florin et al., 2010; Seth, 2010).
A recent study by Florin et al. (2010) suggested that application
of filtering to neural data disturbs the information content and
time ordering of the data, leading to spurious and missed causal-
ities (Type I and Type II errors, respectively). Their conclusion is
based on the correct observation that filtering in general alters
the regression coefficients of VAR models of the data. They then
show using numerical simulations that filtering induces Type I and
Type II errors in sample.2 However, they did not make any ana-
lytical connection between the two observations. In fact, as we
argue, the errors observed in simulation by Florin et al. derive from
the difficulties inherent in fitting VAR models to filtered data, not
from the filtering process per se.  In particular, filtering generally
induces a large increase in the empirical model order (the number
of lagged observations incorporated into a VAR), leading to model
mis-specification given limited data.

Our paper is organised as follows: in Section 2 we define G-
causality in both the time and frequency domains, for unconditional
and conditional situations, and for both univariate and multivariate
(block, ensemble) variables. We  also discuss estimation for finite-
sample empirical data and significance testing. Readers familiar
with the mathematical basis of G-causality may  wish to skip this
section, referring to it where needed for notation. In Section 3 we
demonstrate analytically the invariance of G-causality under the
application of an (almost) arbitrary stable, invertible, multivari-
ate filter. The invariance is completely general, applying to all the
varieties of G-causality just mentioned. We  then consider issues
arising in empirical estimation of G-causality, suggesting several
reasons why filtering may  corrupt empirical estimates despite the
theoretical invariance. As mentioned, these turn principally on an
increase in empirical model order induced by filtering; filtering may
also induce near-nonstationarity and other numerical instabilities.
Consequently, we argue that (i) filtering can be useful for pre-
processing nonstationary (or near-nonstationary) time series and
(ii) estimation of G-causality within specific frequency bands can
be accomplished by integrating the frequency domain G-causality
over the appropriate frequencies (“band limited G-causality”). Sec-
tion 4 introduces a minimal VAR system for which G-causalities can
be obtained analytically. We  use this model to test how empirical
estimates of G-causality are influenced by both FIR and IIR filters.
We compare estimates of model order for unfiltered and filtered
processes, showing a large increase in optimal (empirical) model
order following filtering, as well as an increase in the likelihood of
unstable VAR models. We  then analyse the effects of model order
and filtering on statistical significance testing, showing [consistent
with Florin et al. (2010); Seth (2010)]  increases in both Type I and
Type II errors after filtering. We  explain this result by showing a
strong association between increased error rates and an increase
in VAR model order entailed by filtering. Based on these findings,

2 A similar corruption of G-causality inferences by filtering was  shown in another
set of recent simulations (Seth, 2010).

we  demonstrate a useful example of filtering to remove line noise.
Finally, we  show that band-limited G-causality on unfiltered data
correctly identifies frequency specific causal interactions, whereas
G-causality on filtered data does not. Our conclusions are sum-
marised and discussed in Section 5.

2. Multivariate G-causality (MVGC)

Consider a covariance-stationary, n variable, VAR(p) process Ut

(the “universe” of measurable variables) specified by the model3

p∑
k=0

Ak · U t−k = εt (1)

for −∞ < t < ∞,  where the n × n square matrices Ak, k = 0, 1, 2, . . .,  p
are the regression coefficients with A0 ≡ I, the identity matrix, and
εt are serially uncorrelated iid residuals (white noise) with covari-
ance matrix  ̇ ≡ cov(εt). We  allow the model order p to be infinite.
Introducing the lag operator L so that LU t = U t−1, L2U t = U t−2,
etc., we  can write (1) in the form

A(L) · U t = εt (2)

where the p th order square matrix polynomial A(z) is defined to
be A(z) ≡

∑p
k=0Akzk, with A(0) = I.

Covariance-stationarity requires that A(z) exists and is invertible
for all z on the unit disk |z | ≤ 1 in the complex z-plane (Hamilton,
1994); a VAR model of the form (2) is described as stable if it satisfies
this condition. For the finite order case, this requires that all roots
of the characteristic polynomial det(A(z−1)) lie strictly inside the
unit circle. The maximum modulus of the roots of the characteristic
polynomial is the spectral radius of the VAR model, written �(A).
Intuitively, �(A) determines how rapidly autocorrelation of the VAR
decays with increasing lag time, and stability requires that �(A) < 1.

Since the VAR (2) is assumed covariance-stationary, by the Wold
decomposition theorem (Hamilton, 1994) it may  be written equiv-
alently in VMA  form as

U t = H(L) · εt (3)

where the transfer function H(z) for the model is the rational matrix
function defined by H(z) ≡ A(z)−1. In general, the VMA  representa-
tion will be of infinite order.

2.1. Time domain

We  consider firstly unconditional G-causality. Suppose that Ut

is decomposed into two  jointly distributed, multivariate processes

U t =
(

Xt

Y t

)
with dim (X) = k and dim (Y) = l, k + l = n. We  wish to

ascertain the causal effect of the variable Y on the variable X; i.e.,
the G-causality FY→X .

We may  decompose the autoregression (2) as(
Axx(L) Axy(L)
Ayx(L) Ayy(L)

)
·
(

Xt

Y t

)
=
(

εx,t

εy,t

)
(4)

with VMA  representation(
Xt

Y t

)
=
(

Hxx(L) Hxy(L)
Hyx(L) Hyy(L)

)
·
(

εx,t

εy,t

)
(5)

3 In all that follows, bold type indicates a vector quantity and upper-case type
denotes either a matrix or a random variable, depending on context. Vectors are
considered to be column vectors. The symbol T indicates matrix transpose; an aster-
isk  denotes the conjugate transpose of a (complex) matrix, and det(·) denotes the
determinant of a (square) matrix.
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