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a  b  s  t  r  a  c  t

Recent  studies  have  observed  the  ubiquity  of  phase–amplitude  coupling  (PAC)  phenomenon  in human
and  animal  brain  recordings.  While  various  methods  were  performed  to quantify  it,  a rigorous  analytical
definition  of  PAC  is lacking.  This  paper  yields  an  analytical  definition  and  accordingly  offers  theoretical
insights  into  some  of  the  current  methods.  A  direct  PAC  estimator  based  on  the  given definition  is  pre-
sented  and  shown  theoretically  to be  superior  to  some  of  the  previous  methods  such  as  general  linear
model  (GLM)  estimator.  It is also  shown  that  the  proposed  PAC  estimator  is  equivalent  to GLM  estimator
when  a constant  term  is  removed  from  its  formulation.  The  validity  of  the  derivations  is  demonstrated
with  simulated  data  of  varying  noise  levels  and  local  field  potentials  recorded  from  the  subthalamic
nucleus  of  a Parkinson’s  disease  patient.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Phase–amplitude coupling (PAC) between low and high fre-
quency components of electrophysiological signals has received
great interest in neuroscience (Jensen and Colgin, 2007; Jerbi and
Bertrand, 2009; Canolty and Knight, 2010). Many diverse esti-
mation methods were suggested and utilized to measure this
phenomenon (Bruns and Eckhorn, 2004; Mormann et al., 2005;
Canolty et al., 2006; Tort et al., 2008; Lakatos et al., 2008; Osipova
et al., 2008; Cohen, 2008). Some of these methods were also evalu-
ated and their performances were numerically compared in various
studies (Penny et al., 2008; Tort et al., 2010; Onslow et al., 2011).
However, a formal analytical definition of PAC is still lacking.

These methods were designed intuitively to capture and mea-
sure PAC, but we believe the usual strategy hitherto is standing on
its head by asserting the methods without a proper prior definition
of PAC itself as a universal phenomenon. A recent study by He et al.
(2010) already gives clues of this universality as it addresses PAC in
other man-made and natural processes such as Dow–Jones index
and seismic waves.

From a signal processing point of view, the natural way  would
be first to define a universal PAC function and then consider appro-
priate methods that would capture the most accurate estimate
possible. In this second step, the estimation method would mainly
depend on the statistical properties and type of the data set being
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analyzed. Hence, our approach in this study aims to invert the
research path taken so far by providing a rigorous analytical def-
inition of PAC and then proceeding to consider the appropriate
estimators for the quantification of it.

In this respect, we  present a direct PAC estimator stemming
from this definition and relate it theoretically to general linear
model (GLM) estimator (Penny et al., 2008), modulation index (MI)
with and without statistics (Canolty et al., 2006). We  also dis-
cuss some other widely used estimators such as envelope-to-signal
correlation (ESC) (Bruns and Eckhorn, 2004) and cross-frequency
coherence (CFC) (Osipova et al., 2008) following the same context.

Throughout this paper estimates (not the true values) are
denoted with a triangular hat ∧ while E, *, superscript T and :=
stand for expectation operator, convolution operator, transpose
and symbol of “defined as”, respectively.

2. Theory

2.1. Definition of PAC function

Let aH(n) be the amplitudes of a narrowband random vector
zH(n) and let ϕL(n) be the phases of narrowband random vector
zL(n), where zH(n) and zL(n) are bandpass filtered complex analytic
representations from a common random signal or two separate
signals such that

zL(n) = |zL(n)|eiϕL(n)

zH(n) = |zH(n)|eiϕH (n)
(1)

aL(n):=|zL(n)|, aH(n):=|zH(n)|
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where

zL(n):=z(n) ∗ hL(n) + iH{z(n) ∗ hL(n)}
zH(n):=z(n) ∗ hH(n) + iH{z(n) ∗ hH(n)}

HL(ω):=
{

1, ωL − �ωL ≤ ω ≤ ωL + �ωL

0, otherwise

HH(ω):=
{

1, ωH − �ωH ≤ ω ≤ ωH + �ωH

0, otherwise

ωH > ωL + �ωL + �ωH

(2)

with hL(n) and hH(n) being the impulse functions of the filters HL(ω)
and HH(ω), respectively. Here �ωL and �ωH denote the band-
widths of the filters and H denotes the Hilbert transform. Please
note that complex analytic signals contain no negative frequency
components and can be constructed with the Hilbert transform of
real-valued bandpass filtered signals (Smith, 2007).

Then we define PAC function as

�(z, ωL, ωH):= |E{aHeiϕL }|√
E{|aH |2}E{|eiϕL |2}

simplifying to

�(z, ωL, ωH):=|E{aHeiϕL }|√
E{aH

2}
(3)

Following the definition of coherence function (Carter et al.,
1973), the PAC function has similar boundaries of 0 ≤ �(z, ωL,
ωH) ≤ 1.

Please note that the definition provided above should be con-
sidered only for “monophasic” situations, i.e., phase–amplitude
probability density function has only one peak, if it ever has. For
multiphasic cases, our definition can easily be generalized by con-
straining ϕL within a step of interval and integrating them over.
However, the limit of this study is kept only to monophasic cases,
where the considered estimators will not take into account any
phase related distribution or asymmetry in the phase dimension
of coupling such as the entropy based measures suggested by Tort
et al. (2010).

2.2. Direct PAC estimate

It is the most straightforward estimate evaluating the statistical
expectation as averaging over realizations of an ensemble

�̂D:= 1√
N

∣∣∣∑N
n=1aH(n)eiϕL(n)

∣∣∣√∑N
n=1aH(n)2

(4)

Since it has a similar structure to the coherence, its bias must
also tend to zero as the data length N increases or when the PAC
estimate approaches to unity, as Nuttall and Carter (1976) showed
for the case of magnitude-squared coherence estimate.

2.3. Relation to the other estimators

Eq. (4) implies the similarity of the direct PAC estimator with a
popular PAC measure known as “modulation index” (MI) (Canolty
et al., 2006)

�̂MI =
∣∣∣∣∣

N∑
n=1

aH(n)eiϕL(n)

∣∣∣∣∣ (5)

excepting a subtle difference of the factor in its denominator, i.e.,
direct estimation additionally involves a normalization factor being
equivalent to the power of amplitude vector aH(n).

In the following, we  will show that other well-known estimators
such as “general linear model” (GLM) (Penny et al., 2008) gives in
fact no better accuracy than the direct PAC estimator. GLM as a PAC
estimator was suggested by Penny et al. (2008) and was  claimed to
be the most preferable when compared to the others such as �̂MI,
envelope-to-signal correlation (ESC) and phase locking value (PLV)
based methods.

On the light of the PAC definition (3),  we  will demonstrate on the
contrary that direct estimation given by Eq. (4) relates very closely
to GLM and it is expected to give more accurate estimates than GLM
and the others mentioned.

2.4. What does GLM measure amount to?

GLM estimates the PAC strength by linearly regressing the
amplitude vector (Penny et al., 2008)

aH = X  ̌ + ε (6)

with a least-squared approximation. Here X:=[ cos ϕL sin ϕL 1 ]

is a vector of cosines, sines and unities,  ̌ = [ ˇ1 ˇ2 ˇ3 ]T is
regression coefficient vector and ε is the residual vector. The GLM
estimate is given as

�̂GLM =
√∑N

n=1aH(n)2 −
∑N

n=1ε(n)2∑N
n=1aH(n)2

(7)

One can rewrite the GLM definition as

�GLM =
√

P(aH) − P(ε)
P(aH)

(8)

where P(x) := E {xTx} refers to the power. Since the amplitude vec-
tor power can be expressed in terms of regression coefficients and
the residue

P(aH) = E
{

aH
T aH

}
= E{(ˇT XT + εT )(X  ̌ + ε)}

= E{ˇT XT Xˇ}  + E{εT ε} = 2E{ˇT ˇ} + P(ε) (9)

Then GLM function will reduce to

�GLM =
√

2E{ˇT ˇ}
P(aH)

�GLM∼
√

E{ˇT ˇ}
P(aH)

(10)

when (9) is replaced into (8).  Accordingly, these equations indicate
the relation between GLM estimate and the regression coefficients
as

�̂GLM:=
√√√√√√

ˇ1
2 + ˇ2

2 + ˇ3
2

N∑
n=1

aH(n)2

=: �̂ˇGLM

�̂GLM:=
√

ˇ1
2 + ˇ2

2 + ˇ3
2∑N

n=1aH(n)2
=: �̂ˇGLM (11)

Eq. (11) will help us relate the direct PAC estimator to the GLM
estimator.
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