Science of Computer Programming 75 (2010) 232-246

Contents lists available at ScienceDirect cience of Computer

rogramming

Science of Computer Programming i

journal homepage: www.elsevier.com/locate/scico

Enforcing structural regularities in software using IntensiVE

Johan Brichau®*, Andy Kellens®, Sergio Castro?, Theo D’Hondt"

2 Université catholique de Louvain, Belgium
b Vrije Universiteit Brussel, Belgium

ARTICLE INFO ABSTRACT

Arfic{e history: The design and implementation of a software system is often governed by a variety
Received 1 December 2008 of coding conventions, design patterns, architectural guidelines, design rules, and other
gg;g“’edm revised form 13 November so-called structural regularities. To prevent a deterioration of the system’s source code,

it is important that these regularities are verified and enforced upon evolution of the
system. The Intensional Views Environment (IntensiVE), presented in this article, is a
tool suite for specifying relevant structural regularities in an (object-oriented) software
system and verifying them against the current and later versions of the system. At the

Accepted 16 November 2009
Available online 20 November 2009

Keywords: . € N A - X

So%}tware evolution heart of the IntensiVE tool suite are (logic) program queries and the model of intensional
Logic meta-programming views and relations, through which regularities are expressed. Upon verification of these
Structural regularities regularities in the source code of the system, IntensiVE reports the code entities (i.e. classes,

methods, variables, statements, etc.) that violate these constraints. We present IntensiVE
and illustrate its application to the verification of an Abstract Factory design pattern in the
implementation of a software system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Coding conventions, best practice patterns, idioms [1,7], design patterns [13] and other design and stylistic guidelines
have become widespread practices in the design and implementation of modern (object-oriented) software systems.
Inspired by Minsky’s definition of regularities in software systems [28], we refer to such structural guidelines as structural
regularities. The meticulous use of regularities throughout the entire software life-cycle explicitly molds the software
system with design and coding principles that intend to improve its quality in terms of reusability, extensibility and
comprehensibility. A Visitor design pattern [13], for example, provides for extensibility of the implementation with
additional operations traversing over object trees. Similarly, naming conventions render implementation concepts, such
as accessor methods, explicit to improve the understandability of the source code, which is of specific importance in
collaborative development environments. In addition, many of today’s frameworks, libraries and middleware suggest a
number of stylistic guidelines and impose crucial constraints on the system’s design and implementation (e.g. E]JB, Ruby
on Rails).

In spite of their intended benefits, the consistent and meticulous application of structural regularities in the source code
of a software system is often problematic. The reason for this is that most regularities are not an integrated part of the
development process and programming languages of current-day implementation practices. With notable exceptions for
particular kinds of regularities, such as stylistic conventions and some bad practices, which can be specified and verified
using tools like CheckStyle [4] and Lint [20], the vast majority of regularities in an application remain informally defined.

* Corresponding author.
E-mail addresses: johan.brichau@uclouvain.be (J. Brichau), andy.kellens@vub.ac.be (A. Kellens), sergio.castro@uclouvain.be (S. Castro),
tjdhondt@vub.ac.be (T. D’Hondt).

0167-6423/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2009.11.005


http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:johan.brichau@uclouvain.be
mailto:andy.kellens@vub.ac.be
mailto:sergio.castro@uclouvain.be
mailto:tjdhondt@vub.ac.be
http://dx.doi.org/10.1016/j.scico.2009.11.005

J. Brichau et al. / Science of Computer Programming 75 (2010) 232-246 233

Without any means to document and enforce regularities in the source code, they can easily be violated, especially in
subsequent evolutions of the system. In order to prevent the quality of the source code from deteriorating, it is imperative
that regularities can be enforced, or at least verified, when the system evolves.

IntensiVE,' the Intensional Views Environment [25] is a tool suite for specifying and enforcing a wide variety of structural
regularities in the source code of a system. Software engineers can define regularities by means of source-code queries that
gather specific source-code entities into intensional views, upon which constraints are imposed. Key to this technique is that
it provides a means for verifying application-specific structural source-code regularities, much in the style of unit testing:
developers can specify the regularities they deem interesting and invoke their verification at any time they desire. Typically,
such structural verification is applicable following any committed evolution or maintenance activity. Upon such verification,
violations of the regularities in the source code will be reported by the tool suite, allowing developers to take appropriate
corrective actions.

In this article, we give a comprehensive overview on how IntensiVE is used to define and enforce structural regularities.
In comparison with previous articles on the technique of intensional views [25,26,22], we specifically introduce the
parameterization and instantiation of intensional views. This recent addition to the technique permits to parameterize the
definition of a regularity such that it can be instantiated in multiple locations, both in the same and in different software
projects. In the former case, it means that instances of the same regularity in the source code (such as multiple instances
of the same design pattern) rely upon the same regularity definition but are verified as independent instances. In the latter
case, it means that a regularity definition can be reused across different projects, eventually even facilitating the creation of
reusable libraries of “regularity verification rules”. In addition, while former articles have presented IntensiVE in the context
of Smalltalk projects, in this article we apply IntensiVE to a Java project and demonstrate some of the new visualizations
and possible customizations. Finally, we also outline IntensiVE’s architecture, we present how IntensiVE itself applies to the
verification of its own implementation and we discuss the technical choices that were made in its implementation.

IntensiVE is implemented in Smalltalk [14] and integrates tightly with the VisualWorks development environment,? but
can equally-well verify regularities in Cobol programs [21], and Java projects through a loose integration with the Eclipse
environment. In this paper, we demonstrate the application of IntensiVE to the documentation and enforcement of a Java
implementation of the Abstract Factory design pattern [13]. Section 2 elaborates on the importance of structural regularities
and introduces the important constraints of the Abstract Factory design pattern. Next, Sections 3 and 4 demonstrate the
definition and verification of this pattern using IntensiVE. In Section 5, we demonstrate the use of IntensiVE to express
bad smells and Section 6 discusses the extensibility of the IntensiVE tool suite with a visual reporting tool for the State
design pattern regularity. Section 7 gives an overview of a number of case studies that were performed using IntensiVE
and, subsequently, Section 8 elaborates on the architecture and design choices taken in the implementation of IntensiVE as
an extensible tool suite and as a combination of integrated Smalltalk tools. Finally, an overview of related work is given in
Section 9.

2. Structural regularities

A structural regularity is any decidable property of the structure of a software system that must hold true for a well-
defined part of it. In addition to commonly known patterns and conventions, application-specific properties of the source
code such as “all classes in the hierarchy of the class Command must have a name starting with prefix Command”, “accessor
methods must all be implemented according to the same idiom” and “entities in the presentation layer are not allowed to
refer to entities in the database layer” are structural regularities.

Structural regularities play an important role in the development process. As observed by Minsky [28], the proper and
meticulous use of regularities in software systems can be considered as a kind of engineering principle that aids in dealing
with the inherent complexity of software systems [3]. Developers can, for example, communicate certain concepts that
are only implicitly available in the source code to other developers by consistently using intention-revealing names or
patterns in the source code to characterize this concept and thus make it explicit. Furthermore, regularities aid in obtaining
stylistically uniform source code, leading to a more comprehensible and maintainable implementation [1]. Next to the
aforementioned stylistic reasons for introducing regularities, the correct functioning of the system can depend on whether
developers correctly adhere to certain regularities. For example, when making use of technology such as object-oriented
frameworks, when applying design patterns, or when particular platforms such as EJB are employed, developers must adhere
to certain architectural or design rules imposed by these technologies. When regularities expressing such architectural or
design rules are violated, this can result in erratic and incorrect behavior of a system.

2.1. Example regularity: The abstract factory design pattern
The Abstract Factory design pattern is a widely used, yet simple example of a structural regularity in object-oriented

systems. This design pattern insulates the creation of objects (products) from the client code that uses them. Its

1 http://www.intensional.be.
2 http://www.cincomsmalltalk.com.


http://www.intensional.be
http://www.intensional.be
http://www.intensional.be
http://www.intensional.be
http://www.cincomsmalltalk.com
http://www.cincomsmalltalk.com
http://www.cincomsmalltalk.com
http://www.cincomsmalltalk.com

Download English Version:

https://daneshyari.com/en/article/433537

Download Persian Version:

https://daneshyari.com/article/433537

Daneshyari.com


https://daneshyari.com/en/article/433537
https://daneshyari.com/article/433537
https://daneshyari.com/

