
Science of Computer Programming 75 (2010) 276–287

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Distributed and Collaborative Software Evolution Analysis with
Churrasco
Marco D’Ambros ∗, Michele Lanza
REVEAL, Faculty of Informatics, University of Lugano, Switzerland

a r t i c l e i n f o

Article history:
Received 27 November 2008
Received in revised form 20 May 2009
Accepted 22 July 2009
Available online 18 August 2009

Keywords:
Software evolution analysis
Collaboration
Visualization

a b s t r a c t

Analyzing the evolution of large and long-lived software systems is a complex problem that
requires extensive tool support due to the amount and complexity of the data that needs to
be processed. In this paper, we present Churrasco, a tool to support collaborative software
evolution analysis through a web interface. After describing the tool and its architecture,
we provide a usage scenario of Churrasco on a large open source software system, and we
present two collaboration experiments performedwith, respectively, 8 and 4 participants.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Software evolution analysis is concerned with the causes and the effects of software change. There is a large number
of approaches, which all use different types of information about the history and the (evolving) structure of a system. The
overall goal is, on the one hand, to perform retrospective analysis, useful for a number of maintenance activities, and, on
the other hand, to predict the future evolution of a system. Such analyses are intrinsically complex, because modeling the
evolution of complex systems implies:
1. The retrieval of data from software repositories, managed by software configuration management systems such as CVS
or SVN,

2. The parsing of the obtained raw data to extract relevant facts and to minimize the noise that such large data sets exhibit,
and

3. The population of models that are then the basis for any analysis. Tools supporting software evolution analysis should
hide these tasks from the users, to let them focus on the actual analysis.

Moreover, such tools should provide means to break down information complexity, typical for large and long-lived
software systems. We argue that any software evolution analysis tool should possess the following characteristics:

FlexibleMeta-model. Several, and largely similar, approaches have been proposed to create and populate amodel
of an evolving software system, considering a variety of information sources, such as the histories of software
artifacts (as recorded by a versioning system), the problem reports stored by systems such as Bugzilla [1], e-mail
archives, user documentation [2], etc. Even if such models are appropriate for modeling the evolution, they are
‘‘hard-coded’’ in the sense that their creators took deliberate design choices in accordance with their research
goals. We postulate that software evolution tools should be flexible with respect to the underlying meta-model: If
the meta-model is changed or extended because some new type of information is at hand, or because some new
analysis is required, the tool should adapt itself to the new meta-model.

∗ Corresponding author. Tel.: +41 58 666 4758; fax: +41 58 666 4536.
E-mail addresses:marco.dambros@usi.ch (M. D’Ambros), michele.lanza@usi.ch (M. Lanza).

0167-6423/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2009.07.005

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:marco.dambros@usi.ch
mailto:michele.lanza@usi.ch
http://dx.doi.org/10.1016/j.scico.2009.07.005


M. D’Ambros, M. Lanza / Science of Computer Programming 75 (2010) 276–287 277

Fig. 1. The architecture of Churrasco.

Accessibility. Researchers have developed a plethora of evolution analysis tools and environments. One
commonality among many prototypes is their limited usability, i.e., often only the developers themselves know
how to use them, thus hindering the development and/or cross-fertilization of novel analysis techniques. There
are some notable exceptions, such as Moose [3], which have been used by a large number of researchers over
the years. Researchers also investigated ways to exchange information about software systems [4,5], approaches
which, however, are seldom followed up because of lack of time or manpower. We argue that software evolution
tools should be easily accessible: They should be usable from any machine running any operating system, without
any strings attached.
Incremental Storage of Results. Results of analyses and findings on software systems produced by tools are often
written into files and/or manually crafted reports, and are therefore of limited use. We claim that analysis results
should be incrementally and consistently stored back into the analyzed models: This allows researchers to develop
novel analyses that exploit the results of a previous analysis (cross-fertilization of ideas/results). It can also serve
as a basis for a benchmark for analyses targeting the sameproblem, andultimatelywould also allowone to combine
techniques targeting different problems.
Support for Collaboration. The need of collaboration in software development is gettingmore andmore attention.
Tools which support collaboration, such as Jazz for Eclipse [6], were only recently introduced, but hint at a larger
current trend. Just as the software development teams are geographically distributed, consultants and analysts
are too. Specialists in different domains of expertise should be allowed to collaborate without the need of being
physically present together. Because of these reasons, we argue that software evolution analysis should be a
collaborative activity. As a consequence, software evolution analysis tools should support collaboration, by allowing
different users, with different expertise, from different locations, to collaboratively analyze a system.

We present Churrasco [7], a tool for collaborative software analysis, which is available at http://churrasco.inf.unisi.ch.
Churrasco has the following characteristics:

• It hides all data retrieval and processing tasks from the users, to let them focus on the actual analysis, and provides an
easily accessible interface over a web browser to model the data sources to be analyzed.

• It copes with modeling and populating problems by providing a flexible and extensible object-relational persistence
mechanism. Any data meta-model can be dynamically changed and extended, and all the data is stored in a central
database.

• It provides a set of collaborative visual analyses and supports collaborative analysis by allowing users to annotate the
analyzed data.

• It stores the findings into a central database to create an incrementally enriched body of knowledge about a system,
which can be exploited by subsequent users.

Structure of the paper. In Section 2 we describe the Churrasco framework, its architecture, and its main components. We
then provide an example of a collaborative session and describe two collaboration experiments performed with Churrasco
(Section 3). We discuss our approach in Section 4 and examine tool building issues in Section 5. We survey related work in
Section 6, and conclude in Section 7 with a summary of our contributions and directions of future work.

2. Churrasco

Fig. 1 depicts Churrasco’s architecture, consisting of:

1. The Extensible Evolutionary meta-model describes the internal representation of software systems’ evolution, which can
be extended using the facilities provided by the Meta-base module.

http://churrasco.inf.unisi.ch
http://churrasco.inf.unisi.ch
http://churrasco.inf.unisi.ch
http://churrasco.inf.unisi.ch
http://churrasco.inf.unisi.ch


Download	English	Version:

https://daneshyari.com/en/article/433540

Download	Persian	Version:

https://daneshyari.com/article/433540

Daneshyari.com

https://daneshyari.com/en/article/433540
https://daneshyari.com/article/433540
https://daneshyari.com/

