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a  b  s  t  r  a  c  t

Cortical  thinning  and  intracortical  gray  matter  volume  losses  are  widely  observed  in  normal  ageing,  while
the decreasing  rate  of  the  volume  loss  in subjects  with  neurodegenerative  disorders  such  as  Alzheimer’s
disease  is  reported  to  be  faster  than  the  average  speed.  Therefore,  neurodegenerative  disease  is consid-
ered as accelerated  ageing.  Accurate  detection  of  accelerated  ageing  based  on the  magnetic  resonance
imaging  (MRI)  of  the  brain  is a relatively  new  direction  of  research  in computational  neuroscience  as  it
has the  potential  to offer  positive  clinical  outcome  through  early  intervention.  In order  to  capture  the
faster  structural  alterations  in  the  brain  with  ageing,  we  propose  in  this  paper  a computational  approach
for  modelling  the  MRI-based  structure  of  the  brain  using  the  framework  of  hidden  Markov  models,  which
can  be  utilized  for age  prediction.  Experiments  were  carried  out  on  healthy  subjects  to  validate  its  accu-
racy and  its  robustness.  The  results  have  shown  its ability  of  predicting  the  brain  age  with  an  average
normalized  age-gap  error  of two  to  three  years,  which  is  superior  to  several  recently  developed  methods
for brain  age  prediction.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Age-related changes in brain morphology, including cortical
thinning and gray matter (GM) atrophy, have been widely observed
in ageing people. These brain changes can be firstly observed on the
magnetic resonance imaging (MRI) in middle age (Salat et al., 2004;
Chan et al., 2003). These alternations in the brain follow certain
patterns. The morphological changes may  be accelerated in some
specific brain regions. An example includes the prefrontal cortex
where age related changes can be greater than in other regions
(Sowell et al., 2003). Meanwhile, neurodegenerative diseases, such
as Alzheimer’s disease (AD) and dementia accelerate brain tissue
loss at a faster rate than the normal brain ageing process. Further-
more, recent reports (Vivek et al., 2006; Spulber et al., 2010) have
revealed that brain tissue atrophy caused by AD is more regionally
specific than normal ageing. These two factors exhibit properties
that are distinguishable from the normal ageing brain morphology.
Therefore, it is possible to estimate the stages of ageing accord-
ing to the morphology observed on MRI  data. The ability to predict
deviations in brain morphology, from the normal ageing pattern,
before the pathological onset has the potential of improving clin-
ical diagnosis and treatment by early intervention (Christos et al.,
2009; Spulber et al., 2010; Sluimer et al., 2009; Driscoll et al., 2009;
Fotenos et al., 2008).
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Several studies have been directed at detecting accelerated age-
ing in the brain: if the predicted age according to brain images is
older than the subject’s real age, then this could be evidence of fast
ageing. It has been realised that in order to identify faster brain atro-
phy, the construction of a healthy MRI-based brain ageing model is
required to validate the accuracy and robustness of the prediction
(Franke et al., 2010).

There are four exploratory modelling methods for modelling
neuronal ageing using MRI  data. The first is support vector
machines (SVM) (Lao et al., 2004) which assigns subjects into four
age stages. The second is relevance vector machine for regression
(RVR) based age prediction using principal component analy-
sis for feature selection (Franke et al., 2010). The method was
applied to 550 healthy subjects and a mean absolute error of 4.98
years was obtained. In (Ashburner, 2007), age prediction was  esti-
mated by using RVR, which yielded a root mean squared error of
6.5 years. The fourth example is quantitative brain water maps
(BWM)  which predicts brain age with a median absolute devi-
ation of 6.3 years between real and predicted ages (Neeb et al.,
2006).

All of these prediction methods are based on high dimensional
morphological analysis (HDMA) (Fan et al., 2007). Although the
HDMA approach has been widely applied, it has several technical
challenges, including the need for large training data and effective
feature selection. In order to overcome the limitation of the HDMA,
and to detect subtle structural changes of the brain for identifying
accelerated ageing, we propose to build a structural brain model
for each subject by using the framework of hidden Markov models
(HMMs). We  then estimate the brain age of a target subject by com-
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puting the similarity between the constructed HMM  of the subjects
by using the Kullback–Leibler divergence.

The rest of the paper is organised as follows. In Section 2, we
briefly present the mathematical components for building an HMM
of the MRI-based brain structural model. Section 3 presents the
concept of the Kullback–Leibler divergence as a basis for the HMM-
based similarity analysis. Section 4 illustrates and discusses the
performance of the proposed approach using a public MRI  database.
Finally, Section 5 is the summary of the findings, and highlights of
some suggested issues for further study

2. HMM  for MRI-based brain structural model

In order to construct an HMM  for the brain model, we extract a
useful feature of the MRI  of the brain using the wavelet coefficients.
The wavelet coefficients are then coded using a vector quantization
technique for modelling the hidden states of the HMM.  We  also
discuss other components of the HMM  and finally provide a sum-
mary of the computational procedure for building the HMM  for the
MRI-based brain structural model.

2.1. Wavelet-feature extraction and symbol coding

The wavelet transform is a widely used signal processing
tool which is often applied in multisolution analysis and image
compression. It is capable of capturing data features based on dif-
ferent frequency bands. An example includes a 2D image: vertical,
horizontal spatial frequency characteristics of the image. This pro-
cedure intuitively decomposes images into a number of scales, each
of which represents a certain coarseness of the data under study.
The discrete wavelet transform (DWT) is commonly used for sig-
nal analysis that decomposes original signals into approximation
and oscillation (detail) coefficients. Approximation is a basic and
smooth representation of the original signal, while oscillation pro-
vides the high frequency components within the original signal.

In brain MRI, DWT  can be used to extract basic voxel intensity
distribution patterns to characterise the distribution patterns of
the brain tissue and CSF, while discarding the high frequency oscil-
lations. The high frequency components may  contain noise that
is introduced by the registration and normalization steps, which
human eyes cannot distinguish. The DWT  can be applied on differ-
ent scales of the brain MRI; for example, in each block of scattered
MRI  slices, on each slice of MRI  or the whole volume. We  are inter-
ested in exploring the local structure of the brain tissues and CSF.
We  also aim to capture the gradual structural changes within the
brain, accompanied with ageing. Therefore, we  implemented the
DWT  in each block of scattered MRI  slices of every subject.

In the present work, only GM,  WM and CSF regions of the brain
MRI  data were used for the wavelet feature extraction, as our pur-
pose is to detect the structural and volume changes of different
tissues rather than the intensity or density alterations. We  divided
each axial slice of a brain MR  image into N × N blocks, rearranged
the voxel values of each block into a vector to extract its wavelet
approximation. The approximation of the DWT  reflects how differ-
ent tissues are spatially distributed in each block of the MR  images.
For example, when the atrophy of GM exists in one block, the posi-
tion of different tissue indices would alter. Thus, the brain structural
changes with ageing can be captured by this feature, and further
reflected in the brain model we are going to build. In order to
avoid the effect of noise and registration errors in the detail coef-
ficients of the wavelet transform, we only preserved the wavelet
approximation coefficients.

To implement the wavelet transforms, two sets of functions are
involved in the procedure: scaling and wavelet functions represent-
ing low and high pass filters, respectively. The Daubechies wavelet

transform was  applied in our study. The high-pass and low-pass
functions are given as follows.

yhigh[k] =
∑

n

x[n]g[2k − n] (1)

ylow[k] =
∑

n

x[n]h[2k − n] (2)

where yhigh, ylow are the outputs of the highpass g and lowpass h
filters after resampling by two. The procedure can be repeatedly
applied to the approximation of the last scale to produce approxi-
mation and detail on a coarser scale until a desired level is reached
which forms a pyramidal structure (Mallat, 1989).

The wavelet coefficient vectors defined above are expected to
be able to extract substantial information of the strcutures of the
tissues and CSF. However, since we extract these vectors from
each block where there is inevitable spatial relevance leading to
redundancy. A data reduction step is required and discussed in the
following procedure using a vector quantization (VQ) technique.
Vector quantization is a data compression method, which utilizes
codevectors to represent the source vectors in their proximity. VQ
can reduce the amount of data, storage requirement and compu-
tational complexity. A set of codevectors which best represent a
training dataset is called a codebook. Suppose we have a group of
M source vectors. T = {x1, x2, . . .,  xM} , every vector is k-dimensional.
xm = (xm1, xm2, . . .,  xmk), m = 1, 2, . . .,  M.  Let N be the number of
codevectors and C = {c1, c2, . . .,  cN} , every cn is k-dimensional as
xm : cn = (cn1, cn2, . . .,  cnk), n = 1, 2, . . .,  N. Let Sn represent the encod-
ing space associated with code vector Cn, P = {S1, S2, . . .,  SN} is the
partition of the encoding space. If a source vector xm is located
in an encoding space Sn, then its approximation is Cn, denoted by
Q(xm) = cn. The average distortion is given by:

DVQ = 1
MK

M∑
t=1

(||xt − Q (xt)||)2 (3)

The VQ process can be shortly described as follows: given T and
N, find C and P, such that DVQ is minimized. However, C and P must
follow the two criteria (Gersho and Gray, 1992). One is the nearest
neighbour condition: the encoding region Sn consists of all vectors
that are closer to cn than any of the other codevectors. For example,
if one vector is determined to belong to region Sn, then the distance
between the vector and the center of Sn should be shorter than
any distances between the vector and the centres of other regions.
For vectors that are on the boundary of any region, a tie-breaking
procedure can be applied to determine which region these vectors
belong to. The other criterion is the centroid condition: codevector
cn should be the average of all training vectors that are in encoding
region Sn. The most commonly used VQ method is the LBG algo-
rithm (Gray, 1984). The LGB starts with an initial codebook, and
then iteratively splits the training data into two codevectors until
the desired number of the codevectors is reached. The data to be
quantized in this study are the wavelet coefficient vectors which
are extracted from the MRI  data of each subject.

In order to compare the similarity between subjects, the code
vectors should be consistent from subject to subject. However, the
more the number of subjects increases, the more the computer
memory requires. In order to avoid the problem of large computa-
tional load in the VQ design, we  propose to build the same codebook
for every two  subjects for all the pairwise combinations. In other
words, the codevectors of every two subjects are pooled together
for the construction of the codebook, and then based on the fea-
ture (wavelet) vectors of each subject, the state transitions of each
subject can be obtained from the pooled codebook. The number of
code vectors was experimentally chosen to be 32, which is among
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