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a b s t r a c t

Neurons receive, process and transmit information using two distinct types of signaling methods: analog
signals, such as graded changes in membrane potential, and binary digital action potentials. Quantita-
tive estimates of information in neural signals have been based either on information capacity, which
measures the theoretical maximum information flow through a communication channel, or on entropy,
the amount of information that is required to describe or reproduce a signal. Measurement of entropy
is straightforward for digital signals, including action potentials, but is more difficult for analog signals.
This problem compromises attempts to estimate information in many neural signals, particularly when
there is conversion between the two signal formats. We extended an established method for action
potential entropy estimation to provide entropy estimation of analog signals. Our approach is based on
context-independent data compression of analog signals, which we call analog compression. Although
compression of analog signals is computationally intensive, we describe an algorithm that provides prac-
tical, efficient and reliable entropy estimation via analog compression. Implementation of the algorithm
is demonstrated at two stages of sensory processing by a mechanoreceptor.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nerve cells receive and transmit information in two distinct for-
mats that can be broadly characterized by the terms analog and
digital. Continuous, or graded variation of physical parameters,
including membrane potential, membrane current or transmitter
concentration, are analog signals. In addition, sensory neurons can
receive analog signals such as light intensity or mechanical dis-
placement, while muscle cells produce analog contraction force or
movement. In contrast, many neurons transmit and receive infor-
mation as action potentials, which are often treated as point events
whose only important property is their time of occurrence, creating
a binary digital signal.

Therefore, quantitative measurement of information carried or
processed by neurons requires methods of measuring information
that can be reliably applied to both analog and digital neural signals.
One approach to neural information measurement is via signal-to-
noise ratio, which provides an estimate of information capacity, the
amount of information that could theoretically be carried by a noisy
communication channel (Shannon and Weaver, 1949). This has the
advantage that some methods of estimating signal-to-noise can be
applied to both analog and digital signals (Juusola and French, 1997;
Borst and Theunissen, 1999; Pfeiffer and French, 2009), providing
valid comparisons.
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Information capacity estimates the maximum performance of a
neural component but not the actual rate of information transmis-
sion. Instead, information content can be estimated from the signal
entropy (Rieke et al., 1997; Juusola and French, 1997; Chacron et al.,
2003; Juusola and de Polavieja, 2003; French et al., 2003). While
entropy can be estimated directly from a binary signal (Rieke et al.,
1997), the situation is more complex for analog signals. Extrapola-
tion of the binary approach leads to a measure called differential
entropy (Cover and Thomas, 1991) based on the probability density
function (PDF) of randomly distributed values arriving at a receiver.
This can be extended to the conditional probability between input
and output signals to a neuron (Juusola and de Polavieja, 2003).
However, a central problem with PDF based methods is their
assumption of randomness in time, which is clearly false for many
neural signals.

An alternative approach to entropy measurement is data com-
pression (Salomon et al., 2007). The signal is treated as a data set
consisting of a series of symbols and the entropy of the data set
is calculated from the total number of symbols multiplied by the
amount of information required to uniquely identify each symbol.
The data set is then compressed by removing any redundancies in
the symbolic description to produce the minimum entropy that is
required to reproduce the original signal. This approach has been
used to estimate entropy in action potential signals of several sys-
tems by treating the action potentials as binary values (Rapp et al.,
1994; Jiménez-Montano et al., 2000; French et al., 2003). Here,
we extend the data compression approach to analog signals, and
describe an algorithm that allows the entropy of neural analog
signals to be estimated reliably and efficiently.
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2. Materials and methods

2.1. Animal preparation and electrophysiology

Details of the preparation for recording receptor potential
and action potentials from spider mechanoreceptors have been
described in detail before (Pfeiffer and French, 2009) and will only
be briefly summarized here. Legs of adult spiders, Cupiennius salei,
were autotomized following a protocol approved by the Dalhousie
University Committee on Laboratory Animals. Patella cuticle con-
taining the intact VS-3 slit-sense organ was cut from the leg and
waxed to a Plexiglas holder that permitted access to both the outer
and the inner surfaces of the organ (Juusola et al., 1994). The prepa-
ration was continuously superfused with spider saline (in mM:
NaCl, 223; KCl, 6.8; CaCl2, 8; MgCl2, 5.1; HEPES, 10; Glucose, 17; pH
7.8). Tetrodotoxin (1 �M in spider saline) was applied during mea-
surements of receptor potential. Chemicals were purchased from
Sigma (Oakville, ON, Canada).

Neurons were visualized by an Axioskop 2 FS Plus upright
compound microscope with an Achroplan 40X water immersion
objective (Zeiss, Oberkochen, Germany), mounted on a gas-driven
vibration isolation table inside a Faraday cage (Technical Manu-
facturing, Peabody, MA). Sharp borosilicate glass microelectrodes
(OD, 1 mm; ID, 0.5 mm; Hilgenberg, Malsfeld, Germany) were
pulled using a P-2000 horizontal laser puller (Sutter Instrument,
Novato, CA). Electrodes were filled with 2.5 M KCl and had resis-
tances between 40 and 100 M� in solution. Neuronal somata
were impaled with the microelectrodes using a PatchStar micro-
manipulator (Scientifica, Uckfield, UK). Recordings were made
in discontinuous single-electrode current-clamp mode using a
SEC-10LX amplifier (npi electronic, Tamm, Germany). Switching
frequencies between 18 and 20 kHz and a duty cycle of 1/4 (current
passing/voltage recording) were used. The voltage was low-pass fil-
tered at 33.3 kHz and the current signal was filtered at 3.3 kHz by
the amplifier.

Mechanical stimulation was by pseudorandom Gaussian white
noise generated by a 33-bit binary sequence algorithm with a
time resolution of 0.1 ms, using a P-841.10 piezoelectric stimula-
tor driven by an E-505.00 LVPZT amplifier (Physik Instrumente,
Auburn, MA) that pushed a glass probe against the slits from
below. Personal computers performed data recording and stimu-
lation using custom-written software. Stimulation was via a 12-bit
D/A converter and recordings via a 16-bit A/D converter (National
Instruments, Austin, TX).

Action potentials were detected by a threshold-detection algo-
rithm (French et al., 2001) and stored as time of occurrence, then
digitally filtered by convolution with a sin(x)/x function (French and
Holden, 1971) and re-sampled at 1 ms intervals (Fig. 1). Continu-
ous signals (mechanical stimulus and receptor potential) were also
re-sampled at 1 ms intervals.

2.2. Simulations

Simulated continuous, or analog, signals were generated by a
Gaussian random number generator using 10-bit quantization with
a nominal sample interval of 1 ms. Action potentials were initially
simulated at an operator-selected regular firing rate as values of
zero or unity with nominal sample interval of 0.1 ms.

2.3. Entropy estimation by analog compression

Analog signals (mechanical stimulus, receptor potential and
digitally filtered action potentials) were normalized and digitized
so that the maximum amplitude range was represented by 10-
bit numbers, or 1024 different amplitude levels (Fig. 1). Entropy
was obtained by context-independent data compression (Jiménez-

Montano et al., 2000; French et al., 2003). Each of the 1024
numerical values representing the digitized signal was treated as
an independent symbol in a linear sequence, or message. Data com-
pression was performed by repeatedly replacing pairs of symbols
that occurred with greatest frequency by new symbols, until no fur-
ther compression was achieved (Fig. 1). The compression entropy,
Ec, was then obtained from:

Ec = N log2 M (1)

where N = number of symbols in the compressed message,
M = number of different symbols in the message (French et al.,
2003).

The entropy of a digitized signal increases linearly with the num-
ber of bits used in digitization (Cover and Thomas, 1991). Values
of Ec were divided by the digitization level (in this case 10) to
allow direct comparison with other entropy measures. Note that
this method allows complete reconstruction of the original digi-
tized signal from the compressed sequence, and is independent of
original signal structure. Therefore, the method gives lossless and
context-independent data compression. This method of entropy
estimation will be referred to as Analog compression.

2.4. Entropy estimation by digital compression

In this method, action potentials were represented as regu-
larly sampled binary values of zero (no action potential) or one
(action potential) during each sample in time. The resulting binary
sequences were compressed directly by the same process as analog
compression, but utilizing only the two initial symbols (Jiménez-
Montano et al., 2000; French et al., 2003). This method was used
to estimate entropy of action potentials before digital filtering, and
will be referred to as Digital compression.

2.5. Entropy estimation by probability density function

For some simulations an alternate estimate of analog signal
entropy was obtained from the probability density function, p(x),
of the different amplitude levels, x, by averaging over time (Fig. 1).
Differential entropy, Ep, was then estimated from:

Ep = −
∫

p(x) log2 p(x) dx (2)

(Cover and Thomas, 1991). Values of Ep were divided by the digiti-
zation level (in this case 10) to allow direct comparison with other
entropy measures.

2.6. Entropy estimation by serial compression of analog signals

An alternative data compression technique for analog signals
was tested. Digitized values (10 bits) were obtained as for analog
compression, but instead of assigning a different symbol to each
value, they were written in binary format (ones and zeros) and
concatenated to produce a stream of bits ten times longer than the
original signal. The binary stream was then processed by digital
compression, identical to that used for action potentials in Section
2.4 above. This method will be referred to as Serial compression.

2.7. Pointer sorting in analog compression

Analog or digital compression requires identification and count-
ing of all paired symbol combinations in the sequence. The time
required for these operations grows nonlinearly with the length of
the sequence (to be shown in Section 3) and becomes a limiting
factor in entropy estimation. The number of possible pair combi-
nations is clearly m2, where m is the number of different symbols in
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