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Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be
involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key compo-
nent for the top-down control of perception. However, measuring this activity and its influence requires
precise extraction of frequency components. This processing is not straightforward. Particularly, difficul-
ties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase
information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents
Neuronal oscillations a novel r_nethqd using adapFivg filters f01; tracking and. extracting these time—varying oscillatioqs. This
Cross-frequency couplings scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then
EEG capable of tracking an oscillation and describing its temporal evolution even during low amplitude time
segments. Moreover, this method can be extended in order to track several oscillations simultaneously
and to use multiple signals. These two extensions are particularly relevant in the framework of EEG
data processing, where oscillations are active at the same time in different frequency bands and sig-
nals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic
signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape
discrimination experiment for assessing its usefulness during EEG processing and in detecting function-
ally relevant changes. This method is an interesting additional processing step for providing alternative
information compared to classical time-frequency analyses and for improving the detection and analysis
of cross-frequency couplings.
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1. Introduction about the subsequent behavioral responses in both motor and
sensory tasks (Linkenkaer-Hansen et al., 2004; Womelsdorf et al.,
2006). Additionally, the phase of neuronal oscillations was suc-

cessfully linked to activity of single neurons (Jacobs et al., 2007).

Oscillatory phenomena have been the focus of increasing inter-
est in neuroscience research. Neuronal oscillations have been

proposed as a key mechanism for the large-scale integration of cog-
nitive processes through which top-down internal states influence
stimulus processing (Engel et al., 2001; Varela et al., 2001). Sev-
eral models have been developed, with oscillations either serving
as a binding mechanism bringing together different perceptions
into a unified representation (Singer and Gray, 1995; Engel and
Singer, 2001) or as a dynamic substrate for neuronal commu-
nication achieved through the coherence between brain areas
(Fries, 2005). Also a more precise observation of specific oscillatory
parameters can shed light on even more detailed brain processes.
For instance, the ongoing oscillatory state of the brain before a
given stimulus has been shown to provide valuable information
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Finally, increasing evidence indicates that responses within clas-
sical neuronal frequency bands likely interact with each other
through coupling mechanisms that remain to be identified (Jensen
and Colgin, 2007). In this framework, cross-frequency couplings
could provide a unifying mechanism for the intermingled neu-
ronal oscillations acting at different temporal and spatial scales
(Von Stein and Sarnthein, 2000), and recent studies tend to ver-
ify the existence, and the possible importance of cross-frequency
couplings, during a variety of motor, sensory and cognitive
tasks (Canolty et al., 2006; Lakatos et al., 2007; Demiralp et al.,
2007).

Taken together, these findings raise the need for efficient meth-
ods for accurate estimation of oscillatory information such as phase,
frequency and amplitude from raw signals. A well-known method
widely used to get such spectral information is the Hilbert trans-
form and its analytic signal representation (Gabor, 1946). However,
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although many studies have successfully identified and described
phase synchronizations by applying this method to wide-band
neuronal signals, it has been shown that proper estimation of oscil-
latory parameters can be performed only on narrow-band signals
(Nho and Loughlin, 1999; Chavez et al., 2006). Moreover, subse-
quent synchronization measures such as the Phase Locking Value
(Tass et al., 1998) are reliable only when applied to narrow-band
signals (Celka, 2007). Therefore, band-pass filtering was applied
to neuronal signals as a pre-processing step, in order to split the
raw signals into narrow-band oscillations of different frequencies.
Although this filter bank approach can lead to a more reliable
analysis of oscillatory interactions (Canolty et al., 2006), a major
drawback of such pre-processing should be mentioned. Because the
cut-off frequencies of each band-pass filter must be pre-defined and
remain constant during the whole analysis window, physiologically
misleading outputs could be produced by the filters, in the case of
a frequency component crossing the cut-off frequency limit of a
filter. In such situations, it would be preferable to follow an oscilla-
tory component in a continuous manner, without constraining the
spectral content to fixed limits. This remark emphasizes the need
for adaptive methods able to track narrow-band oscillations over
time.

Recently, we proposed a novel method for adaptively tracking
multiple oscillations in single-trial EEG signals (Uldry et al., 2009).
In this article, we describe the tracking abilities of our algorithm
for the estimation of single or multiple frequencies in both syn-
thetic and EEG signals. The physiological relevance of well-known
synchronization measures can be assessed using the temporal
outputs of our method. Importantly, our previous publication on
this tracking scheme is extended in order to clearly illustrate its
capabilities for adaptive frequency estimation and its advantages
over more traditional approaches for measuring cross-frequency
couplings. In Section 2, we present the basics of our algorithm
as well as its multi-frequency and multi-signal extensions, and
we illustrate its performance on synthetic signals. In Section 3,
we present the results of our method on real EEG single-trial
signals in terms of adaptive frequency tracking, and demon-
strate the benefit of applying common synchronization measures
on the temporal outputs of our filters, compared to current
methods.

2. Methods

The oscillation tracking methods are presented within the
complex-valued signal framework. This approach simplifies sev-
eral aspects of the computations. Especially, the filters are shorter
(only one pole is needed for a complex band-pass filter, whereas
two poles are required for a real band-pass filter). Of course, the
signals of interest are real-valued in practice. But with the Hilbert
transform one obtains the so-called analytic representation, whose
real part is the original signal itself. Therefore, it is always possible
to revert back to real-valued signals.

2.1. Frequency tracking

The frequency tracking algorithm presented in this paper is
based on a real-valued scheme (Liao, 2005). It is composed of two
parts; a time-varying band-pass filter and an adaptive mechanism
that controls the central frequency of the filter. The structure is
shown in Fig. 1. The input signal is defined as

x(n) = d(n) +w(n) = A(n)e!®™M" 4 w(n),

where A(n) and w(n) are the amplitude and the instantaneous fre-
quency of the cisoid and w(n) is an additive white complex centered
noise. The output signal, y(n), is obtained by filtering the input
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Fig. 1. Frequency tracking algorithm structure.

signal with a band-pass filter, with transfer function

1-8
1 - Ba(n)z-1"
The bandwidth is determined by 8 (0 « 8 < 1) and a(n) = &/®™ is
the adaptive parameter which controls the central frequency. This
filter has unit gain and zero phase at w(n).
The mechanism, which tracks the oscillations and updates the
filter, is based on the complex discrete oscillator equation

d(n) = é®od(n — 1) = apd(n — 1). (2)

H(z,n) = (1)

This equation is satisfied for a cisoid at frequency wq. Therefore

given d(n) and d(n — 1), it is possible to obtain the frequency with
d(n)

wo = Arg{ap}, oo = dn-1)

In a time-varying and noisy scenario, the coefficient @(n + 1) can

be estimated by minimizing the mean square error (MSE) of the

oscillator equation (2) for the output signal, y(n), of the adaptive

filter (1):

J(n) = E{ly(n) — a(n + 1)y(n — 1)1} (3)
Setting dJ(n)/da(n + 1) = 0, the optimal solution is

E(y(n)y(n— 1)}
E{ly(n — 1)]?}

where the upper bar denotes the complex conjugate. However, this
expression is not applicable in practice. Therefore, the expectations
are replaced by exponentially weighted averages (Haykin, 2001),
and the adaptive mechanism becomes
Q(n) _ 6Q(n—1)+[1-38ly(n)y(n —1)

an+1)= == = 4

( ) P(n) SP(n—1)+[1-8]ly(n—1)]2 )
where § (0 « § < 1) controls the convergence rate. The modulus
of coefficient o(n + 1) is then brought back to unity to ensure the
stability of the band-pass filter. Finally, the frequency estimate is
obtained with w(n + 1) = Arg{a(n + 1)}.

a(n+1)=

2.2. Multiple frequency tracking

Typically, multiple oscillatory components are active at the
same time in EEG signals. The method described previously can
be extended to the multi-component case. Now, it is assumed that
the input signal is composed of K cisoids with additive complex
noise, i.e.

K

K
xX(m) = "di(m)+w(n) =Y “A(m)e ™" + w(n)

k=1 k=1

where Ai(n) and wy(n) are the amplitude and the instantaneous
frequency of the kth cisoid and w(n) is an additive white com-
plex centered noise. The basic idea of the extension is to use one
frequency tracking algorithm from Section 2.1 to track each com-
ponent. However, because the band-pass filters (1) are not ideal
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