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a b s t r a c t

This report describes an integrated software package, DataView, which contains a number of tools for
analysing rhythmic neural activity. These include simple autocorrelation, a merge-and-drop filter, an
enhanced version of the Poisson surprise method and a flexible hill-and-valley analysis tool. The package
contains facilities for identifying, examining, and if appropriate, correcting, outliers arising from misiden-
tification or rhythm abnormalities. The package has a full graphical user interface which provides flexible
and rapid feedback on the progress of analysis, and the consequences of choices regarding parameters
for the various tools. The user can thus easily experiment with different methodologies and tool settings,
and tune the analysis to the most appropriate form for the data in question.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A common task in electrophysiology is analysing rhythmic activ-
ity such as that driving locomotion, respiration, mastication or
copulation. The simple presence of a rhythm and its fundamen-
tal frequency characteristics can be detected by autocorrelation
(Perkel et al., 1967), but for more detailed analysis a key require-
ment is correct identification of the bursts of activity. If the onset
and offset times of bursts are known, information about the episode
duration, burst frequency, burst duration, phase of the activity,
and sequential changes therein can be extracted. Most methods for
detecting bursts fall into three broad categories: manual analysis,
rectify-and-smooth, and interval-based statistical analysis.

In manual analysis the experimenter determines the onset and
offset times through visual examination of the data. This has the
advantage that an experienced analyst can use an overview of the
general characteristics of the activity combined with a lot of back-
ground knowledge to make particular decisions. It is very difficult to
encapsulate such experienced-based pattern recognition within a
computer program. However, it has two major disadvantages: first,
it is difficult to remove the possibility of experimenter bias, and sec-
ond, it is prohibitively expensive in time to analyse a large amount
of data. Double-blind analysis may alleviate the former problem,
but it exacerbates the latter. It is also extremely tedious to perform
such analysis.
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A common method which attempts to automate the process is
to rectify (or square) the data and then to smooth them with a
filter or leaky integrator (e.g. Mulloney et al., 1987; Kjaerulff and
Kiehn, 1997). This produces a series of “hills and valleys” whose
regularity reflects the regularity of the rhythm. It is usual then to
set a threshold level, and the time at which the hill climbs over
this threshold defines burst onset, and the time at which it drops
below it defines burst offset. An advantage of this method is that it
includes amplitude as well as time information within the analysis
(e.g. Mulloney, 2005), since bigger hills reflect more intense activ-
ity. Problems with the method include the choice of filter, and the
level of the threshold. These choices affect the relationship between
the time of the threshold crossing, and the time of the actual burst
activity. Furthermore, higher order metarhythms (e.g. alternating
periods of weak and strong rhythmic activity) can cause baseline
shifts so that no single absolute threshold is adequate.

Interval-based statistical analysis methods start by converting
the continuous (albeit digitized) recorded signal into a series of
“events”—objects with unit amplitude, and an on-time and off-
time (possibly of unit duration). The analyses are usually grounded
on the notion that intervals between events within bursts are
likely to be shorter than intervals between events not within
bursts, or those delimiting adjacent bursts (Cocatre-Zilgien and
Delcomyn, 1992; Chen et al., 2009). Various statistical measures
have been proposed to identify contiguous events whose inter-
vals are less than would be “expected” from non-burst activity,
including parametric Poisson surprise maximisation (Legéndy and
Salcman, 1985) and non-parametric rank surprise maximisation
(Gourévitch and Eggermont, 2007). However, neither of these
methods takes account of any underlying rhythm. Therefore, when
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applied to bursts that are known to be rhythmic, information
regarding the probability of occurrence of bursts at particular times
is not used. Furthermore, brief (single event) “bursts” are obviously
undetectable since there is no within-burst interval by which to be
surprised.

This report describes an integrated analysis package, DataView
(http://www.st-andrews.ac.uk/∼wjh/dataview), which provides
practical tools for carrying out these procedures. It introduces a new
“merge-and-drop” (merge/drop) filter method which makes use of
the regularity of rhythmic activity to enhance interval-based burst
detection, and provides extended versions of the Poisson surprise
and hill–valley analysis methods. DataView has a full graphical
interface that provides immediate visualization of the emergent
burst frequency and duration characteristics as analysis progresses
(Fig. 1). The user can therefore readily compare the outcomes of
different procedures and parameter sets, and choose which is best
for a particular problem.

2. Materials and methods

The end-point of primary rhythm analysis in Dataview is to
identify the bursts within a rhythm as a list of events with unit
amplitude and appropriate on-times and off-times. The timing
characteristics of the rhythm can be fully extracted from these
events. The amplitude characteristics (peak voltage, RMS voltage,
power, area, etc.) can be extracted by analysing the data within the
time windows defined by these events, and DataView has facilities
for this. DataView can hold up to 26 separate lists of events (identi-
fied by the characters a–z), each with an arbitrary number of events
within it.

2.1. Manual analysis

In manual analysis, the user simply drags the mouse over a burst
of activity identified visually within the chart-recorder display of
the data. Each such operation enters an event into a selected list,
until the user exits the analysis mode. The chart view can be scrolled
during analysis, and the selected list can be changed by key press,
so different channels of data can be entered into different lists for,
e.g., phase analysis.

2.2. Interval-based analysis

DataView has three main interval-based analysis tools: an auto-
correlation histogram, a merge/drop filter (see below) and Poisson
surprise burst detection. Rank surprise burst detection is also sup-
ported, but this did not prove appropriate for rhythm analysis and
is not discussed in this report.

The first task in interval-based rhythm analysis is to convert
the raw signal into a series of digital events that indicate peri-
ods of activity. This is done by simple threshold crossing. The user
places vertical cursors to delimit a silent or inter-burst period (e.g.
bar in Fig. 2A) and the program calculates the mean and standard
deviation of the signal within the cursors. The recording is then
scanned for data which exceed the mean plus or minus some user-
set multiple of the standard deviation. The result is a series of source
events, many of which come from activity within bursts, but some
of which come from between-burst activity. The task is to identify
the rhythm from the timing information of these source events.

2.3. Merge/drop filter

The source events arising from bursts will generally be char-
acterized by brief inter-event intervals, while the source events
arising from between-burst activity will generally be shorter in
duration than the bursts themselves and more widely separated

than source events within bursts. This means that a process of
merging source events which are separated by only a short interval,
followed by dropping brief events, is likely to lead to many of the
resulting “rhythm” events encompassing the times of the bursts
(Fig. 2A). The problem lies in determining the appropriate mini-
mum off-time for the merge filter, and minimum on-time for the
drop filter. These are derived by an iterative process which attempts
to optimize the regularity of the frequency and duration of the
rhythm events that emerge from the filtering process. The process is
as follows. A minimum off-time and minimum on-time are selected
for trial, and the source events are processed through the two filters
sequentially. Two graphs are constructed from the rhythm events,
showing the instantaneous cycle period (start-time to next start-
time) plotted against time, and the burst duration (start-time to
end-time) plotted against time. A robust polynomial or smoothed
trendline is fitted to each of these graphs using the LOWESS tech-
nique (Cleveland, 1979; the algorithm is well described by Hen
et al., 2004). It is essential that these trendlines should be robust,
because at many stages in the analysis there are multiple outliers
with respect to the main trend, and these would skew a non-robust
method. The optimal choice of filter parameters is the one that min-
imizes the deviations in both graphs relative to their respective
trendlines (Fig. 2B, frequency but not duration plots shown).

In practice the filter settings can either be adjusted by hand to
produce a good visual fit to the trendlines, or the optimal settings
can be detected automatically. The latter requires a cost function
to define what constitutes a good fit. A function which seems to
yield good results (i.e. ones that are largely consistent with bursts
defined “by eye” by experienced investigators) is the product of the
average absolute normalized deviation of the instantaneous cycle
periods and burst durations from their respective robust trendlines.
Thus

costfreq,duration = 1
n

i=n∑

i=1

∣∣∣yi − ȳi

ȳi

∣∣∣ (1)

and

costtotal = costfreq × costduration (2)

where yi is the value of the ith data point out of a total n, and ȳi is
the value of that point as predicted by the robust trendline. Note
that it is extremely unlikely that either cost will be zero, so neither
factor will completely dominate the other.

This cost function has a very jagged distribution across the range
of possible filter parameters, so a brute force search is employed.
This is not as bad as it sounds, because the discrete distributions of
times due to digital sampling means that only a limited sub-set of
the potential range of filter parameters needs to be tested. The sub-
set is further limited by the user, who seeds the search by entering
a “best guess” for the average cycle period after visual inspection
of the data or preliminary autocorrelation analysis. This value does
not have to be very accurate. The programme rejects solutions in
which the average period of the emergent rhythm is less than half or
more than double this value. This is necessary to prevent spurious
solutions in which, for instance, all the source events are combined
into a small number of “megabursts”. It also substantially speeds
the search process since the major computational expense is in cal-
culating the robust polynomial fit, and this can be skipped for filter
parameters that yield rhythms outside the acceptable frequency
range.

2.3.1. Trimming bursts
Since source events are detected as deviations from the mean

voltage, it is inevitable that some will arise from non-burst activ-
ity, either as noise or between-burst spikes. If these occur close
to genuine bursts, the merge filter may incorporate them into the
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