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Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical
analysis, misleading conclusions can be reached. Here we attempt to address this problem by apply-
ing a state-space smoothing method, based on the combined use of the Kalman filter theory and the
Expectation-Maximization algorithm, to denoise two datasets of local field potentials recorded from
monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high
gamma band (60-90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise,
and denoising leads to markedly improved results that were physiologically interpretable. For the second
dataset, Granger causality between primary motor and primary somatosensory cortices was not consis-

tent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between
the two subjects was significantly reduced.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Experimental measurements are noisy. For neural recordings,
the noise may arise from a multitude of sources, both intrinsic
and extrinsic to the nervous system. Operationally, supposing that
recorded data are composed of two parts, signal of interest and
other processes unrelated to the experimental conditions, the lat-
ter can be collectively referred to as noise. The presence of noise
can adversely impact the statistical analysis performed on the
data (Albo et al., 2004). Consider two possibilities. First, if noise
has a broadband spectrum, its deleterious effect is thus expected
to become progressively more severe in higher frequencies (e.g.
gamma band), as the power of neural signals typically decreases
with frequency in a 1/f fashion (Buzsaki and Draguhn, 2004). Thus
far, this problem has not received much research interest, despite
the fact that high frequency neural activity is hypothesized to have
asignificant role in normal brain functions and in pathology (Keil et
al., 1999; Tallon-Baudry and Bertrand, 1999; Buzsaki and Draguhn,
2004; Schnitzler and Gross, 2005). Second, for multivariate neural
data, Granger causality has become a useful tool in revealing direc-
tions of neuronal interactions among different brain regions, both
in the time and in the frequency domain (Bernasconi and Konig,
1999; Bernasconi et al.,2000; Hesse et al.,2003; Brovelli et al., 2004;
Bollimunta et al., 2008; Dhamala et al., 2008a,b; Guo et al., 2008a,b;
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Marinazzo et al., 2008). Theoretical derivations and numerical sim-
ulations have shown that noise, depending on the signal-to-noise
ratio, can give rise to false directions while masking true directions
(Nalatore et al., 2007). The manifestation of this problem in neural
data analysis has not been studied.

Analyzing two datasets of local field potential recordings from
monkeys performing a visuomotor task, we wish to accomplish two
objectives. The first objective is to demonstrate the adverse effects
of noise in two specific problems: (1) correlation between pre-
frontal high gamma activity prior to stimulus onset and response
time and (2) beta band Granger causality between primary motor
and primary somatosensory cortex during motor maintenance.
First, a positive correlation between the level of prestimulus high
gamma oscillation (60-90Hz) and the response time (RT) was
found in one monkey (TI). This result contradicts the known prop-
erties of gamma oscillations, and the effect of noise is suspected.
Second, for the interaction between the primary motor and primary
somatosensory cortex in the beta band (15-30 Hz), Granger causal-
ity analysis revealed apparent discrepancies between two monkeys
(GE and LU), and the effect of noise was again suspected. The second
objective is to evaluate the effectiveness of a statistically principled
method to separate signal from noise. The method, formulated in
state space, combines Kalman filter smoothing with the Expec-
tation and Maximization (EM) algorithm, and has been proven
effective in a number of previous studies (Dempster et al., 1977;
Digalakis et al., 1993; Gahramani and Hinton, 1996; Weinstein et al.,
1994; Shumway and Stoffer, 1982; Smith and Brown, 2003; Smith
etal., 2004, 2005; Nalatore et al., 2007). Our results show that, after
denoising, (1) the correlation between prestimulus prefrontal high
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gamma activity and response time became significantly negative,
meaning that higher levels of gamma activity immediately prior
to stimulus onset lead to faster response times, an observation
consistent with the putative role of gamma activity in mediating
top-down attentional control (Engel et al.,2001) and (2) the Granger
causal influences in the beta band between primary motor and
primary somatosensory cortices become more consistent between
the two monkey subjects. Both results can be seen as providing
evidence for the effectiveness of the proposed denoising approach.

2. Methods
2.1. The denoising algorithm

Kalman filtering (Haykin, 2001) is a standard method for remov-
ing noise from noisy data, a process called denoising. Let y:=(y1¢,
¥Yat, - - - YNt) denote the data from N recording channels at time ¢
(where ’ denotes matrix transpose). We will model this using the
following noisy multivariate autoregressive (MVAR) model:

zt =A1Ze 1 +A2ze 2 + -+ ApZe p + &, (1)
Yt =2t + Ve, (2)

where z; is an N x 1 vector giving the true state of the system, A;
is an N x N coefficient matrix, p is the order of the MVAR process,
eris an N x 1 Gaussian error vector with zero mean and covariance
matrix S, and v; is an N x 1 noise vector with zero mean and covari-
ance matrix R. Thus the observed time series {y;} is being viewed as
composed of two parts: signal of interest (z;) and other unrelated
processes collectively referred to as noise (v;). The signal is recov-
ered via an iteration process to be detailed below, which is initiated
by estimating the parameters in the above equations through fitting
an MVAR model directly to the noisy data using standard proce-
dures, including model order determination by the AIC criterion
(Ding et al., 2000). The source of noise in neural data can be mani-
fold, including noise that is intrinsic to the nervous system, as well
as environmental and instrumental noise. For more discussions on
this, see Section 4.

To apply the Kalman filter algorithm, we first need to rewrite
the above model in a state-space form. This can be accomplished by
introducing an M x 1 state vector X = (¢, 2, 4, .-, Z;—pﬂ Y where
M = Np. In terms of this vector, it can be easily shown (Shumway and
Stoffer, 2000) that the noisy MVAR(p) model can be written as

Xt = Axe_1 +Wr, (3)
Ve = Cx¢ + vt (4)

Here x; is the unobserved (or “hidden”) signal vector of dimension
M x 1 and y; is the N x 1 observed data vector that is the signal
contaminated by noise v;. The objective of Kalman filtering is to
recover x; based on y;. In the above equation, A is an M x M state
transition matrix given in terms of the unknown coefficient matri-
ces A; (Shumway and Stoffer, 2000), Cis a trivial N x M observation
matrix givenby (1,0,. . .,0) comprisingone N x Nidentity matrixand
p—1 N x N zero matrices, and w; =(8’t,0’,...,0’...)’ isan M x 1
zero-mean Gaussian independent and identically distributed vec-
tor random variable with the M x M covariance matrix Q (which has
Sin the upper right-hand corner and zeros elsewhere).

This formulation of Kalman filter is not directly applicable to
experimental data as it assumes the knowledge of the model
describing the state-space dynamics. That is, A, C, Q, R are assumed
to be known. In our case, this knowledge is not available except for
C (which is a fixed constant matrix for MVAR models as described
above). This problem is overcome by combining the Kalman fil-
ter formulation with the Expectation and Maximization algorithm
(Dempster etal., 1977; Digalakis et al., 1993; Gahramani and Hinton,

1996; Weinstein et al., 1994). A similar approach has been used by
Smith et al. to estimate state-space parameters from neural spike
trains and behavioral data (Smith and Brown, 2003; Smith et al.,
2004, 2005). A review of other applications of this method appears
in Roweis and Ghahramani (1999).

The denoising algorithm includes the following steps (Nalatore
etal, 2007).Let {x} and {y} denote the set {x;} and {y;}, respectively,
for all time. Other than the actually observed vector {y}, if we were
able to observe the hidden state vector {x}, then we could consider
{x, y} as the complete data with the joint density (Shumway and
Stoffer, 1982, 2000):
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Under the Gaussian assumption, the joint log likelihood (given
by log P({x}, {¥})) can be written as
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where ’ again denotes matrix transpose. We have assumed that
x1 ~N(u1, Vi) where w1, Vq are fixed. The unknown parameters are
0={A, Q R}.If we could observe {x}, we could obtain the maximum
likelihood estimates (MLEs) of these parameters by maximizing
the above joint likelihood function with respect to these param-
eters. Since {x} is unobserved, we need to use the EM algorithm
in conjunction with the Kalman smoother to obtain estimates of 6
and of course{x}. These are obtained by iteratively maximizing the
conditional expectation of the joint likelihood function given by:

0 = E[log P({x}, y))I{y}, 6Y~ 1], (7)

Forj=1,2,...

We start the iteration with the initial guess 8(%) for the parameter
values. We obtain these by applying the standard AR model estima-
tion procedures to the noisy data (Ding et al., 2000), yielding A;s and
S, which can then be put in their respective state-space forms A(®
and Q(®). The initial guess R for R is usually taken to be a fractional
multiple of the identity matrix. Then O depends on the fol-
lowing three conditional expectations: &1 = E[x¢|{y}, 0~ D], Pyr =
Elxex; 1{y} , 09V, Pyt = E[xex,_,I{y}, 0U=)].

These quantities can be calculated using the Kalman smoother
(see Appendix A for the smoother equations). This completes the E
step.

Next, we go to the maximization (M) step. Each of the parameters
A, Q, R is re-estimated by maximizing O. The expressions obtained
for these parameters are:
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