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a b s t r a c t

Due to time and resource constraints, small samples (N = 3–7 cases per group) are often used in neuro-
biological studies that employ multiple techniques. In a simulation study, five statistical tests were used
to compare two small samples (treated and control) with an unstable, additive baseline. These five tests
differed in the way that they used the baseline variable (B) to adjust or normalize the variable affected by
the treatment (Y). We conclude that, if N = 3 or 4, the independent t-test on Y–B tends to have the highest
power; if N ≥ 7, ANCOVA on Y with B as the covariate tends to have the highest power; and both tests have
comparably high power if N = 5 or 6. The Wilcoxon rank-sum test (or, equivalently, the Mann–Whitney
test) has precisely zero power if one group has 3 cases and the other has 3 or 4 cases. Some other problems
of small-sample analysis are considered.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

High-profile neuroscience journals tend to favor manuscripts
in which authors demonstrate the existence of a phenomenon by
using a number of different (genetic, anatomical, pharmacologi-
cal, etc.) experimental techniques. An unintended consequence of
this approach is that the results of each of the experiments are
often based on small samples. This approach is becoming stan-
dard in some subfields of neuroscience; for example, extremely
small samples (3–5) are routinely used in developmental neu-
robiology papers published in prestigious journals (e.g., Gulacsi
and Anderson, 2008; Naka et al., 2008; Pascual et al., 2008).
The editorial preference for many interlocking pieces of evidence
over the solidity of each of the individual pieces appears to rest
on the assumption that the self-consistency itself provides good
enough proof. At best, this type of reasoning makes research
purely qualitative, mathematical modeling difficult, and puts neu-
robiology on a path long abandoned by exact sciences. At worst,
it may lead to grossly incorrect conclusions, as noted even by
scholars in humanities (Eco, 1990). The “soft” science of psychol-
ogy began to seriously address these and other related questions
(including the dubious value of null-hypothesis significance test-
ing) several decades ago (Meehl, 1967; Cohen, 1994; Cohen et al.,
2003). In this respect, some of the “harder” neurobiology contin-
ues to fall behind. Serious problems with statistical analysis in
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biology have been recently addressed by Nakagawa and Cuthill
(2007).

The seriousness of these issues notwithstanding, small samples
will continue to be used because a single measurement in neu-
robiology often costs hundreds of dollars. An important problem
therefore is to know how to use such samples in the most opti-
mal way. Specifically, in null-hypothesis significance testing, one
should be likely to arrive at a non-significant result if two small
samples are not different and a significant result if they are differ-
ent. These probabilities are 1 − ˛ and 1 − ˇ, respectively, where ˛
is the Type I error, ˇ is the Type II error, and 1 − ˇ is the power
of the test. Unfortunately, the Type II error is rarely controlled for
in neurobiological research. A typical inferential error is to assume
that a P value greater than .05 indicates that the two samples are
statistically equal. For the sake of argument, let us assume that the
theoretical mean of a treated sample (N = 3) is 15, the theoretical
mean of a control sample (N = 3) is 10, the theoretical standard devi-
ations in both samples equal 3, both samples are drawn from normal
distributions, and the two-tailed independent t-test is used to com-
pare them. In this case, the P ≥ .05 result should be expected in more
than 65% of experiments (i.e., ˇ > .65) despite the 50% greater theo-
retical mean in the treated sample. In other words, the P ≥ .05 result
is the expected result before the sampling even began and, as such,
proves virtually nothing about the equality of the samples. Based
on these considerations, it is obvious that the test with the highest
power should always be preferred over other tests irrespective of
the expected result (P < .05 or P ≥ .05).

The main focus of this paper is to investigate the power of sev-
eral statistical tests that can be used to compare two small samples
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when the experimental baseline fluctuates (as it always does in
practice). Since in neurobiology treated and control samples are
often obtained from uncorrelated or weakly correlated sources (dif-
ferent animals, cell cultures, etc.), here they are assumed to be
statistically independent (“unpaired”).

An unstable experimental baseline is often dealt with by using
the “normalization by division” procedure, in which the variable
of interest is divided by a “baseline variable” that is immune to
the experimental treatment but is sensitive to uncontrolled fluc-
tuations of the experimental baseline. In immunohistochemistry,
such a “normalized” variable may be the proportion of labeled cells
with respect to another cell population that is not affected by the
experimental treatment. In Western blotting, it may be the rela-
tive optic density of a protein band with respect to the band of a
“housekeeping” (e.g., actin) protein in the same sample. Since such
“normalization” and the normal distribution have nothing in com-
mon, to avoid confusion “normalized” variables can be referred to
as “ratio variables”.

Most statistical tests have not been designed for small samples of
ratio variables. They typically use normal approximations that are
valid only when samples are not small (e.g., the standard imple-
mentations of the Mann–Whitney and Wilcoxon rank-sum tests),
or assume normality of the populations from which the samples
are drawn (e.g., the t-test). However, the ratio of two normally
distributed variables is not normally distributed. If two normally
distributed variables are independent and have zero means, their
ratio has the Cauchy distribution which is “unusual” in that it has
no theoretical mean. A closed form of the distribution of the ratio
of two normal variables with arbitrary means and standard devi-
ations has been discovered only recently (Pham-Gia et al., 2006).
Interestingly, this distribution can be asymmetric and/or bimodal
(Pham-Gia et al., 2006). This finding has important consequences
even for large samples; for example, a recent study has suggested
that the distribution of serotonin levels in blood platelets (calcu-
lated as the amount of serotonin per platelet) may be bimodal
in individuals diagnosed with pervasive developmental disorders
(Mulder et al., 2004). Vickers (2001) has suggested that “normal-
ization by division” should be avoided since it tends to reduce rather
than increase the power of the t-test.

Several studies have shown that analysis of covariance
(ANCOVA) has high power in randomized studies with an unstable
baseline if several important assumptions are met (Vickers, 2001;
Senn, 2006; Van Breukelen, 2006). Also, “normalization by subtrac-
tion” (when the baseline variable is subtracted from the variable of
interest) has been shown to improve the power of the t-test when
the correlation between the variable of interest and the baseline
variable is large (Vickers, 2001). However, most published stud-
ies have focused on relatively large samples and small effect sizes
(Cohen, 1992), which is a typical situation in psychology or epidemi-
ology. In neurobiology, often small or extremely small samples are
used to detect large effect sizes. Therefore, in the present study the
power of five different statistical methods was assessed when the
treated and control samples had as few as 3–7 cases.

2. Materials and methods

In a typical situation, one has to compare two samples, one
of which represents the “treated” condition and the other one
is a “control”. In each individual case, we measure the variable
of interest (Y) and a “baseline” variable (B) that is immune to
the experimental treatment but sensitive to baseline fluctuations.
Specifically, we consider the following model:

YGi = �0 + G�1 + eyGi + ecGi,

BGi = �b + ebGi + ecGi,

where YGi and BGi are the values of Y and B in the ith case located in
group G (where G = 0 if the group is the control group and 1 if it is the
treated group); �0 and �0 + �1 are the theoretical means (expected
values) of Y in the control and treated group, respectively; �b is the
theoretical mean of B (equal in both groups); and eyGi, ebGi, and ecGi
are statistically independent and normally distributed error terms
with theoretical zero means and standard deviations �y, �b, and
�c, respectively. It should be emphasized that, for given a pair of YGi
and BGi, eyGi and ebGi are generally different, whereas the same ecGi
(“baseline fluctuation”) is added to both YGi and BGi. In other words,
eyGi and ebGi vary within units of analysis (i’s, or “cases”), whereas
ecGi varies only between units, but not within.

We compare two very small samples (N = 3, 5, 7 per group)
and numerically estimate the power of five statistical tests: (i) the
independent, two-tailed t-test on Y (with B disregarded); (ii) the
independent, two-tailed t-test on Y divided by B (i.e., Y/B); (iii) the
two-tailed Wilcoxon rank-sum test on Y/B; (iv) the independent,
two-tailed t-test on the difference between Y and B (Y − B); and (v)
ANCOVA with Y as the dependent variable and B as the covariate. It
should be noted that the Wilcoxon rank-sum test does not assume
normality and is equivalent to the Mann–Whitney test. Next, we
consider some advantages and drawbacks of each of the tests.

(i) The independent t-test on Y (with B disregarded) is appropri-
ate considering the normality of the variables. However, the
baseline-fluctuation term (ecGi) increases the variance of Y from
�2

y to �2
y + �2

c , which reduces the apparent effect size of the
treatment. Therefore, the treatment effect is less likely to be
detected than if baseline fluctuations were taken into consider-
ation.

(ii) The normalization Y/B takes baseline fluctuations into consid-
eration but creates a variable that is not normally distributed
(Pham-Gia et al., 2006). This violates the normality assump-
tion of the t-test. The consequences of this violation are poorly
understood when samples are very small.

(iii) In order to avoid the normality violation in (ii), the Y/B variables
can be compared using the Wilcoxon rank-sum test or (equiva-
lently) the Mann–Whitney test which do not assume normality.
However, exact P values have to be calculated in these tests
when samples are small (in standard software implementa-
tions, normal approximations are used for the statistics of these
tests). Unless one is well familiar with the underlying mathe-
matics, obtaining exact P values can be costly (currently, the
SPSS Exact tests module is priced at $ 400). More importantly,
the power of these tests (which are actually one test) is rarely
considered when samples are very small.

(iv) The normalization Y–B takes baseline fluctuations into consid-
eration (mathematically, it eliminates the ecGi term) and creates
a variable that is normally distributed. However, it also changes
the variance of the tested variable from �2

y + �2
c to �2

y + �2
b

.
Therefore, compared to the t-test on Y, the t-test on Y − B will
perform better if �b < �c but worse if �b > �c.

(v) ANCOVA can naturally take into account baseline fluctuations
if the baseline variable is considered to be a covariate. In our
model, the relationship between YGi and BGi can be written in
the linear regression form:

YGi = [�0 + G�1] +
[

�2
c

�2
b

+ �2
c

]
(BGi − �b) + erGi,

where the error term erGi is normally distributed with mean
zero and variance [�2

y + �2
c ] − [�4

c /(�2
b

+ �2
c )] (Shiryaev, 1995).

Since the regression weight at the centered baseline variable is
the same in both groups (i.e., the regression slopes are indepen-
dent of G), the model is equivalent to a standard ANCOVA model
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