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a b s t r a c t

Elaborated data-mining techniques are widely available today. Nevertheless, many non-linear relations
among variables remain undiscovered in multi-dimensional datasets. To address this issue we propose
a method based on the concept of fractal dimension that explores the structure of multivariate data and
apply the method to simulated data, as well as to local field potentials recorded from cat visual cortex.
We find that with changes in the analysis scale, the dimensionality of the data often changes, indicating
first that the data are not simple fractals with one unique dimension and second, that, at a certain scale,
important changes in the geometric structure of the data may occur. The method can be used as a data-
mining tool but also as a method for testing a model’s fit to the data. We achieve the latter by comparing
the dimensionality of the original data to the dimensionality of the data reconstructed from a model’s
description of the data (here using the general linear model). The method provides indispensable help in
estimating the complexity of non-linear relationships within multivariate datasets.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Data analysis requires investigation of relations between data
points, and by any type of such analysis, irrespectively of whether
explorative or hypothesis-driven, only a limited subset of all possi-
ble relations can be addressed. Despite the elaborated data-mining
procedures, many such relations in many datasets remain hidden.
We can only guess how many (important) scientific insights have
been missed just because patterns could not be easily detected in
otherwise, perfectly reliable and legitimate sets of data. Therefore,
we should welcome every new analysis method that is able to probe
new relationships and present the results in an elegant and easily
interpretable way. For such methods, reduction of dimensional-
ity plays an important role (Brand, 2003; Levina and Bickel, 2004;
Tenenbaum et al., 2000). In the present study we propose a method
that is designed to explore relations across multivariate data points
and that is based on the concept of fractal dimension.

1.1. The concept of fractal dimension

A fractal is an object with a high degree of self-similarity,
whereby globally the object looks very similar to its details
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(Falconer, 2003). We show three example fractals in Fig. 1a–c and
for one of them we illustrate how it is created by a simple iterative
procedure (Fig. 1a) (Falconer, 2003, pp. xviii–xx). Perhaps the most
common quantitative description of a fractal is the measure of its
dimension. As the dimensionality of standard geometric objects,
e.g., triangles and cubes, can be grasped easily by intuition, it is
also easy to acquire intuitive understanding of fractal dimensions.
Depending on the space that they occupy, fractals have different
dimensionality and they can be given by real numbers. For exam-
ple, the Koch fractal in Fig. 1a occupies a D = 1.26-dimensional space.
The Sierpinsky fractal in Fig. 1b and another fractal in Fig. 1c (Landau
and Paez, 1997) appear visually to occupy gradually more space, and
this is consistent with their calculated fractal dimensions (indicated
in Fig. 1).

In the present study we use the concept of fractal dimen-
sion to address the common scientific issue of the dimensionality
of data—even if the data are, strictly speaking, not fractals. Data
dimensionality is usually investigated by principal component
analysis (PCA) or factor analysis (Gorsuch, 1983), but not with frac-
tal dimension. The latter is normally used only if the analyzed
objects are already known to have (or are expected to have) frac-
tal properties (e.g., a chaotic attractor) (Strogatz, 1994). However,
this need not be the case. Much insight about datasets commonly
used in scientific research (e.g., those that are described typically
by the general linear model—GLM) can be gained by investigat-
ing the dimensionality of non-fractal data with fractal dimension
(Lutzenberger et al., 1992; Pereda et al., 1998; Woyshville and
Calabrese, 1994).
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Fig. 1. The concept of fractal dimension, its measurement, and the proposed analysis steps necessary to investigate how well a model of a dataset accounts for the data’s
fractal structure. (a) Example Koch fractal and the process of its creation through iterative steps. (b) Sierpinsky (triangle) fractal with dimension larger than that in (a). (c)
A fractal obtained through diffusion-limited aggregation of particles undergoing a random walk (Landau and Paez, 1997). The corresponding dimensions of fractals, D, are
indicated. (d) The procedure for computing the fractal dimension is illustrated for three objects with true D-values = 1–3. The space occupied by the object is partitioned into
‘boxes’ of size d. The number of resulting boxes that intersect (or cover) the object, N, is counted. Finally, N is plotted against the size d in a log–log plot (right panel). If the
object is a fractal, the plot results in a straight line and the slope of the line indicates the dimension of the object. (e) The dimensionality analysis of the data consists of two
tracks. In one, the fractal structure of the original data is calculated and in the other, the fractal structure of data reconstructed from the model is calculated (in all examples
we use GLM). Finally, the two structures are compared (e.g., by comparing their log–log plots).

1.2. Measuring fractal dimension

Fractal dimension is formally computed by one variant of the
Hausdorf dimension, DH (Falconer, 2003). The principles of this cal-
culation are shown in Fig. 1d by a variant of Hausdorf dimension
known as box-counting method. Here, with a change in the analy-
sis scale, d, a different number of boxes, N, is needed to cover the
object. For example, for one-, two-, and three-dimensional objects
in Fig. 1d (left panel) the counts are 2, 4, and 8 for d = 1/2 and 3,
9, and 27 for d = 1/3, respectively. The dimensions of the objects
are then calculated by plotting ln(d) versus ln(N) and calculating
the absolute values of the slopes of the fitted straight lines (right
panel). Therefore, the dimension DH is the absolute value of the
exponent in N ≈ d−D, describing how quickly the count N grows
with the decrease in d.

In the present study we estimate fractal dimensions by a
numerical procedure that is more computation-effective than box-
counting methods and that is known as the correlation dimension,
DF (Camastra and Vinciarelli, 2002; Grassberger and Procaccia,
1983). In most cases, DF produces identical results as DH (within
numerical limits) while in other cases DF < DH, the differences
being very small. Thus, DF can be considered a lower estimate
of D. Numerical details for the calculation of DF are provided in
Section 2.

Central to our analyses are the log–log plots such as the one
shown in Fig. 1d. For successful application of the method, it is
not necessary that the data exhibit the actual properties of fractals.
Fractals produce a straight line in the log–log plot (self-similarity)
while plots for the data might have curvatures (changes in the
slope). Curvatures provide important information about alterations
in data dimensionality across different scales, indicating that the
data are not simple fractals but could be instead described as mul-
tifractals, which can in turn lead to the discovery of interesting data
properties (e.g., Feder, 1988, pp. 185–186). One important applica-
tion is the comparison between the log–log plots for the original

data and those for samples recreated by a model of the data. This
allows one to test, in a novel way, how well the model accounts
for the original data (for the present analyses only GLM models are
tested, Fig. 1e). An example application to real data is made for local
field potentials (LFP), simultaneously recorded with 16 electrodes
from cat visual cortex.

2. Materials and methods

2.1. Experimental procedures

Intracranial LFP recordings were performed on an adult cat
under anesthesia induced with ketamine and maintained with
halothane and a mixture of N2O (70%) and O2 (30%). The cats were
paralyzed with intravenously applied pancuronium bromide (Pan-
curonium, Organon, 0.15 mg kg−1 h−1). LFP activity was recorded
from area 17 with 16-channel silicon probes (organized in a 4 × 4
spatial matrix) which were supplied by the Center for Neural Com-
munication Technology at the University of Michigan (Michigan
probes). The inter-contact distances were 200 �m (0.3–0.5 M�
impedance at 1000 Hz). Signals were amplified 1000× and filtered
1–100 Hz to extract local field potentials (LFP) (1 kHz sampling
rate). To evoke visual responses drifting sinusoidal gratings were
presented on a 21 in. computer screen (100 Hz refresh rate) using
ActiveSTIM software for visual stimulation (ActiveSTIM, high preci-
sion stimulation tool, http://www.ActiveSTIM.com). One stimulus
condition is presented in total 20 times. More details on methods
for data acquisition can be found in (Biederlack et al., 2006).

2.2. Artificially generated data

The artificial datasets shown in Fig. 2a–c (2000 points each)
were generated by a help of a Mersenne Twister pseudo random-
number generator (Matsumoto and Nishimura, 1998). In Fig. 2a
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