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a b s t r a c t

A fractal dimension (FD) gives a highly compact description of the shape characteristics of the human brain
and has been employed in many studies on brain morphology. The accuracy of FD estimation depends
on the precision of the input shape description. Facilitated by automatic cerebral cortical surface recon-
struction algorithms, the shape of the cerebral cortex can be more precisely modeled using Magnetic
Resonance (MR) imaging. Since the reconstructed cortical surface is represented by triangles, rather than
by points, as is typical of models that use voxels, the voxel-based FD estimation algorithms that have been
used in previous studies do not work when using the cortical surface as the input. Thus, designing a new
algorithm that is able to estimate the FD from a surface representation becomes of particular interest.
In this paper, a robust and accurate FD estimation algorithm is proposed. The algorithm is based on a
box–triangle intersection checking strategy, which is used for the first time in brain analyses, and a box-
counting method, which has been widely used in FD computations of the human brain and other natural
objects. These two features endowed the algorithm with robustness. The accuracy of the algorithm was
validated via several experiments using both manually generated datasets and real MR images. As a result
of these features, the algorithm is also suitable for estimating the FD of fractals in addition to that of the
cerebral cortex.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The human cerebral cortex plays a crucial role in human intel-
ligence. For years, many researchers have dedicated themselves
to investigating its structural features and to comparing the cor-
tical folding patterns between groups of individuals. However, due
to the intricate geometry of the cortex, quantifying cortical mor-
phology has always been a difficult task. Measurements such as
thickness, sulcal depth and curvature only reflect local features of
the cortex. The Gyrification Index (GI) (Zilles et al., 1988), although
it gives a global description of cortical complexity, is sensitive to
the direction of slicing (Thompson et al., 2005). Thus, a compact
measurement which is able to characterize the folding pattern of
the whole cortex or at least a lobe of the cortex will be of great value
for researchers.

The fractal, first proposed by Mandlebrot (1982), has been
widely used to describe self-similar structures to which it is difficult
to apply shape analysis in a usual way. Due to its highly convo-
luted gyri and sulci, the human brain is a fractal in some spatial
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scales (Kiselev et al., 2003). The shape complexity of a fractal is
measured by its fractal dimension (FD), a single value that sum-
marizes the variability of an object: the more complex an object
(e.g. a brain with more, deeper folds, or more involuted folding
patterns), the greater its FD value. FD is usually estimated using
the box-counting method (Gangepain and Roques-Carmes, 1986;
Liebovitch and Toth, 1989; Sarraille and Myers, 1994) because of
its robustness in dealing with fractals which do not have strict self-
similarity. Since the human brain is not self-similar at all scales, the
box-counting method is especially suitable for computing the FD
of the human brain.

Many research studies have adopted fractal analysis to explore
the morphological properties of the human brain using segmented
Magnetic Resonance (MR) images (Bullmore et al., 1994; Cook et
al., 1995; Esteban et al., 2007; Free et al., 1996; Kedzia et al., 1997;
Kiselev et al., 2003; Li et al., 2007; Takahashi et al., 2004; Zhang
et al., 2007). In these studies, the FD of white matter (WM), gray
matter (GM), WM/GM surface, and GM/Cerebrospinal fluid (CSF)
surface were computed, mostly by the box-counting method. In
order to eliminate the influence of thickness and give a more com-
pact description of the shape, skeletons were employed to study
the cortical folding pattern (Mangin et al., 2004). Some researchers
computed the skeletons of the cerebral cortex (Ha et al., 2005;
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Lee et al., 2004) and cerebellum (Liu et al., 2003) from the seg-
mented MR images and then used box-counting to obtain the FD.
The above cited works calculated the skeletons slice by slice. Zhang
et al. (2005, 2007) applied a 3D skeletonization algorithm to WM,
and then analyzed the FD of the skeletons. However, voxel-based
methods have two major drawbacks: they cannot preserve the
topology of cortical surface (e.g. the skeletons and surfaces may
include holes); nor can discrete voxels accurately present a contin-
uous structure.

Because it overcomes these two drawbacks, the surface of an
object is a better choice for shape analysis, especially in research
on the cerebral cortex because the cortex is thin. The pattern of gyri-
fication and fissuration reflects a fractal nature (Luders et al., 2004),
which indicates that the FD can be a useful measure when applied
to reconstructed cortical surfaces. The surface-based method was
first presented by Thompson et al. (1996), using manually outlined
sulcal surfaces. Over the next several years, a number of automatic
cortical surface reconstruction algorithms were invented (Dale et
al., 1999; Han et al., 2004; Kim et al., 2005; MacDonald et al., 2000;
Xu et al., 2006). An extracted surface provides more accurate details
of the cerebral cortex than a segmented MRI image, so these recon-
struction algorithms have been widely employed in research on
abnormal FDs in schizophrenia (Narr et al., 2001, 2004), Williams
syndrome (Thompson et al., 2005) and gender differences of cor-
tical complexity (Luders et al., 2004). In addition, Im et al. (2006)
did a thorough study of the relationship between FD and other fac-
tors like cortical thickness, sulcal depth and folding area. However,
the FD estimation method in this work is unstable under differ-
ent parameter choices. We will discuss this in greater detail in
Section 4.

In this paper, we propose a robust and accurate FD estimation
algorithm which is able to measure cortical folding complexity.
This algorithm uses extracted cortical surfaces as input. The box-
counting method and a box–surface intersection checking method
are employed to increase robustness. The accuracy was supported
by a series of experiments. In addition, the algorithm is both eas-
ily written into code in popular programming languages such as C,
C++, Java, C#, etc. and easily used because the user only needs to set
a few parameters. After that, it runs without human intervention.

The remainder of this paper is organized as follows: Section
2 describes the MR images acquisition and pre-processing, and
the FD estimation algorithm in detail; Section 3 gives the exper-
imental results using both artificial data and real MR image data;
Section 4 discusses this method, including a comparison between
our algorithm and the algorithm in Im et al. (2006), issues relating
to parameters, a conclusion and some future research directions.

2. Materials and methods

2.1. MR images

57 normal subjects (27 males and 30 females, 23.6 ± 3.9
years old) participated in this study. All subjects were right-
handed. MR images were scanned on a 3T SIEMENS TrioTim
scanner using a magnetization prepared rapid acquisition gradient
echo (MP-RAGE) three-dimensional T1-weighted sequence (voxel
size = 1 mm × 1 mm × 1 mm; TR = 2000 ms; TE = 2.6 ms; Nex = 1,
slice thickness = 1 mm).

2.2. Pre-processing

Each scan was processed using Freesurfer (http://surfer.nmr.
mgh.harvard.edu/)(Dale et al., 1999; Fischl et al., 1999). In brief, the
pre-processing stage contained four steps. First, intensity nonuni-

formity correction and normalization to stereotaxic space using
linear transformation were applied to the input image. Second,
the voxels of the brain were segmented into GM, WM, CSF and
background. Third, tessellations of the GM/WM boundary, bound-
ary smoothing and automated topological correction (in order to
remove holes and genus on the surface) were performed to obtain
the initial surface. Fourth, the obtained surface was used as the ini-
tial value for the deformable model to reconstruct the pial surface.
Thus, for each scan we got a GM/WM surface and a pial surface for
each hemisphere. We used pial surfaces and their smoothed ver-
sion (smoothed using the mris smooth command of FreeSurfer) in
this study, because we are interested in the sulcal and gyral con-
volutions of gray matter. The FD of the GM/WM surfaces can be
estimated as well for those who are interested in white matter
folding.

A standard brain surface divided into regions of interest (ROI)
(Desikan et al., 2006) was mapped back to each subject’s native
image space with a high-resolution spherical morphing procedure.
ROIs were homologous across subjects. To compute the FD of lobes
of a hemisphere, the surface was divided into prefrontal, parietal,
temporal and occipital lobes by merging the regions of interest in
the same lobe. The cingulate and insular regions were not included
in the above four regions.

In addition, for each scan, the thickness and curvature at each
vertex were calculated using Freesurfer in the native space.

2.3. Box-counting method

Generally, box-counting of an object is done by placing the
object of interest onto a cubic grid of size r, and counting the num-
ber of boxes occupied by the object, namely, N(r). By changing r, a
series of N(r)s are obtained. Then ln N(r) is fitted with ln 1/r. The
fitted slope is the FD estimation of the object. A more detailed
introduction to the box-counting method can be found in Zhang et
al. (2005). In this context in which the object was a reconstructed
cortical surface which consists of many triangles, we counted the
boxes occupied by one or more triangles. Thus, we divided the box-
counting on the cortical surface into three sub-procedures: for each
triangle on the cortical surface, we marked boxes that intersected
it as “occupied boxes”; we counted the number of occupied boxes;
and we computed the FD by applying linear fitting. The last two
sub-procedures are trivial so we focused on the first step. To check
the intersection of a box and a triangle, the part of the triangle inside
the box was calculated. If the part was empty, the box was not occu-
pied by a triangle; otherwise, an intersection existed and the box
was marked. For clarity, we have chosen to illustrate the computa-
tion of the interior under a 2D condition; nevertheless, this method
could be easily extended to 3D. As shown in Fig. 1, a box in 2D is a
square bounded by four lines. The part of a convex polygon (a tri-
angle is a special case) which is inside the box can be calculated by
iteratively cutting it using the four lines and abandoning the parts
outside the square. A line cutting a convex polygon results in two
parts. It is easy to determine which part to throw away since the
position of the line is known. For example, if the upper bounding
line of the square cuts a polygon into two parts, the part above the
line is dropped. In a 3D situation, cutting the triangle with the six
faces of a box gives the interior part of the triangle.

Obviously, testing every triangle–box pair for intersection
requires too much computation and makes estimation impracti-
cal. Thus, bounding-box technique (Parent, 2002) was employed
to reduce the numbers of boxes checked for intersection with-
out losing precision. In this approach, each triangle is bounded in
a bounding cuboid, whose six faces are determined by the min-
imum/maximum x, y, z coordinates of the triangle vertices. The
cuboid gives a range of boxes which may be occupied by the
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