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Abstract

Several methods and algorithms have recently been proposed that allow for the systematic evaluation of simple neuron models from intracellular
or extracellular recordings. Models built in this way generate good quantitative predictions of the future activity of neurons under temporally
structured current injection. It is, however, difficult to compare the advantages of various models and algorithms since each model is designed
for a different set of data. Here, we report about one of the first attempts to establish a benchmark test that permits a systematic comparison of
methods and performances in predicting the activity of rat cortical pyramidal neurons. We present early submissions to the benchmark test and
discuss implications for the design of future tests and simple neurons models.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neurons communicate by generating action potentials that
are transmitted to other neurons in the network. Action potentials
are generated in response to transmembrane currents elicited by
presynaptic activation of various receptor types. Despite years
of research, the exact nature of the neural code, that is how
presynaptic activity is processed and encoded in outgoing action
potentials, is still unknown. Is the neuronal firing rate sufficient
to describe neural activity or does the timing of spikes on a
millisecond timescale matter as well? Following the seminal
work of Hodgkin and Huxley (1952), a lot of effort has been
spent to build and study biophysically detailed models of sin-
gle neuron electrical activity. These models can reproduce a
large variety of neuronal behaviors as observed in experiments
by a suitable combination of different ion currents (Bower and
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Beeman, 1995). However, only few studies have focused on the
methodology of designing algorithms for automatic fitting of
such models to data, so as to arrive at models with a quantitative
predictive power (Druckmann et al., 2007; Huys et al., 2006;
Markram, 2006; Prinz et al., 2003, 2004).

In contrast to detailed Hodgkin–Huxley models, very sim-
ple models only have a small number of parameters which can
be automatically and easily extracted from electrophysiological
recordings. As early as the 1970s and 1980s, neuroscientists
have tried to develop methods for the evaluation of simple
neuron models from neural data. Brillinger and Segundo, in
particular, have used maximum-likelihood and optimal filtering
techniques to evaluate the linear response curve and firing prob-
ability of neuronal membranes thus laying down the foundations
for more modern approaches (Brillinger, 1988a,b; Brillinger and
Segundo, 1979). More recently, different groups tried to extract
not only parameters of interest from data but also to build neuron
models with a true quantitative predictive power. More specifi-
cally, Rauch, La Camera and colleagues have demonstrated that
the output frequency of cortical pyramidal neurons and interneu-
rons recorded in vitro can be fitted by integrate-and-fire neurons
(La Camera et al., 2004; Rauch et al., 2003). Beyond the output
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firing rate, Keat et al. have shown that the precise spike time
of neurons recorded extracellularly in the visual pathway can
be predicted almost exactly with a very simple model neuron
(Keat et al., 2001). Similar results have been obtained on retinal
ganglion cells by Pillow et al. (2005). Several techniques have
been successfully applied to predict the membrane voltage and
spike timing of cortical pyramidal neurons recorded intracellu-
larly in vitro (Clopath et al., 2007; Jolivet et al., 2006; Paninski
et al., 2005) and in vivo (Lansky et al., 2006). Finally, alterna-
tive methods have been proposed that still wait to be tested on
experimental recordings (Jolivet and Gerstner, 2004; Kobayashi
and Shinomoto, 2007).

While simple models can, at least qualitatively, reproduce a
broad range of observed neuronal behaviors (Izhikevich, 2004),
their simplicity also permits to mathematically analyze ques-
tions of neural coding (Arcas et al., 2003; Brunel et al., 2003;
Keat et al., 2001; Pillow et al., 2005). Developing efficient
simple models with quantitative predictive power is also of
importance for implementation in neural prostheses where such
models could be simulated at low cost or built in silico [see e.g.
(Marmarelis and Berger, 2005; Song et al., 2007)].

Despite this intense activity, the community still lacks a
benchmark test that could be used as a reference to compare
cost and performances of different methods. Here, we describe
such a benchmark test and report the first results from an interna-
tional competition1. In short, the goal is to predict the spike times
of a layer-5 pyramidal neuron recorded from the rat somatosen-
sory cortex under current injection in various discharge regimes.
A first set of spike trains was made publicly available together
with the corresponding stimuli for model evaluation. Partici-
pants had to predict the spike times with a precision of ±2 ms
for a different dataset for which only the stimuli were pro-
vided. Note that this initiative differs from the recent Neural
Prediction Challenge2 in the sense that the goal is to design
a model that predicts spike times in response to a fluctuating
current while the goal in the Neural Prediction Challenge is to
design a model that predicts the responses of neurons to “natu-
ral” sensory stimuli in vivo. The benchmark test is described
in the next section. A summary of results and submissions
is then presented in section 3 and discussed in the last sec-
tion.

2. Methods

2.1. Electrophysiological recordings

Data used for the challenge have been extensively described
in Refs. (Jolivet et al., 2006; La Camera et al., 2006; Rauch et al.,
2003) and we refer interested readers to these publications for
details of the experimental protocol. In short, parasagittal slices
of rat somatosensory cortex (300 �m thick) were prepared from
15- to 40-day-old female and male Wistar rats according to the
institutional guidelines. We recorded in current-clamp whole

1 http://icwww.epfl.ch/QuantNeuronMod2007/.
2 http://neuralprediction.berkeley.edu/.

cell configuration from the soma of layer 5 regular spiking pyra-
midal cells (McCormick et al., 1985). Four cells were recorded
and trial repetitions of the input were performed (N = 4 repe-
titions). The input was generated with an Ornstein–Uhlenbeck
process (Tuckwell, 1988). The total injected current I(t) is given
by

I(t + dt) = I(t) − I(t)

τI

dt + mI dt + sIξ(t)
√

dt (1)

where mI and sI are parameters and ξ(t) is a zero-mean, unit-
variance Gaussian random variable, updated at every time step.
The process was generated and injected at a rate of 5 kHz
(dt = 0.2 ms) and the correlation length τI was 1 ms. The result-
ing current I(t) has a stationary Gaussian distribution with mean
μI = mIτI and variance σ2

I = s2
I τI/2 (Cox and Miller, 1965). μI

and σI were varied as follows: the total range 0 < μI < 650 pA
and 0 < σI < 350 pA was discretized and then explored in ran-
dom order to prevent correlations over time. The duration of the
stimulation was 6.8 s long for each pair of parameters μI, σI. The
intervals between successive stimulations were 50–60 s long.

2.2. Measuring the similarity between two spike trains

In order to measure the similarity or dissimilarity between
two spike trains and assess the quality of the predictions of
simple models, we need a measure to compare spike trains as
predicted by the model to spike trains as generated by the origi-
nal cell. One possibility consists of comparing output firing rates
(Hansel and Mato, 2003; Rauch et al., 2003). This is a very effec-
tive method but it misses all temporal structure in spike trains.
Several measures exist that go beyond firing rates and consider
precise firing times. Some measures are based on binning of the
spike trains (Geisler et al., 1991; Kistler et al., 1997; MacLeod
et al., 1998) or on cost functions (Aronov and Victor, 2004; van
Rossum, 2001; Victor and Purpura, 1997, 1996). In precedent
reports, some of us have consistently used the coincidence
factor Γ as defined in Refs. (Clopath et al., 2007; Jolivet and
Gerstner, 2004; Jolivet et al., 2004, 2006; Kistler et al., 1997).
The coincidence factor can be computed quickly and easily. It is
written

Γk = Ncoinc − 〈Ncoinc〉
1/2(Nk

data + Nmodel)

1

N
(2)

where Nk
data is the number of spikes in the kth reference spike

train Sdata, Nmodel is the number of spikes in the predicted spike
train Smodel that is compared with the reference spike train,
Ncoinc is the number of coincidences with precision � between
the two spike trains, and 〈Ncoinc〉 = 2f�Nk

data is the expected
number of coincidences generated by a homogeneous Poisson
process with the same rate f as the spike train Smodel. The factor
N =[ 1 − 2f�] normalizes Γ to a maximum value of one which
is reached if and only if the spike train of the model reproduces
exactly that of the cell. A homogeneous Poisson process with
the same number of spikes as the minimal model would yield
Γ = 0, which is, therefore, the chance level.

The sole free parameter in the estimation of Γ is the coin-
cidence window ±�. Γ is relatively independent of the exact
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