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Complex patterns in neuronal networks emerge from the cooperative activity of the 
participating neurons, synaptic connectivity and network topology. Several neuron types 
exhibit complex intrinsic dynamics due to the presence of nonlinearities and multiple time 
scales. In this paper we extend previous work on hyperexcitability of neuronal networks, 
a hallmark of epileptic brain seizure generation, which results from the net imbalance 
between excitation and inhibition and the ability of certain neuron types to exhibit abrupt 
transitions between low and high firing frequency regimes as the levels of recurrent 
AMPA excitation change. We examine the effect of different topologies and connection 
delays on the hyperexcitability phenomenon in networks having recurrent synaptic AMPA 
(fast) excitation (in the absence of synaptic inhibition) and demonstrate the emergence of 
additional time scales.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Neuronal networks of the brain display complex spatio-temporal patterns [1]. These patterns result from the cooperative 
activity of the participating neurons, the synaptic connectivity and the network topology [2,3]. The dynamics of individual 
neurons depend primarily on the nature and properties of the participating ionic currents whose combined activity gen-
erates the neuron’s effective intrinsic time scales. Synaptic connectivity can be electrical (gap junctions) or chemical [4]. 
The latter, in turn, can be excitatory or inhibitory and operate at different time scales within a relatively large range. Net-
work topologies depend on the brain area and the level of organization and include ring [5,6] (and references therein) and 
small-world network [7–10] connectivities.

While realistic neuronal networks include both excitation and inhibition, there are several aspects of the network dynam-
ics that can be addressed by first understanding the dynamics of recurrently excited networks [8–13] and then investigating 
how recurrent inhibition affects the resulting patterns [12]. One such aspect is that of the hyperexcitability of neuronal cir-
cuits, which is one of the hallmarks of epileptic brain seizure generation [14,15]. Various hypotheses have been put forward 
to explain the generation of abnormal recurrent excitation including the lack of enough inhibition (dormant interneuron 
hypothesis) [16–24] and aberrant axonal reorganization of principal cells (e.g., mossy fiber sprouting in the dentate gyrus) 
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(recurrent excitation hypothesis) [25–35]. Regardless of whether the net imbalance between excitation and inhibition results 
from decreased inhibition or increased excitation, the study of recurrently excited networks is key to understand how the 
network patterns transition between “normal” to hyperexcitable.

Synaptic excitation constitutes a positive feedback effect, and therefore increasing levels of the maximal AMPA synaptic 
conductance (Gex) are expected to produce an increase in the spike (or firing) frequency fspk at a rate that also increases 
with Gex (Fig. 1-a1). However, synaptic excitation does not operate alone, but its net effect depends on its interaction with 
the intrinsic properties of the postsynaptic cell. As shown by us and other authors [12,13,36,37], this can result in some 
unintuitive effects. In [12] we have investigated the mechanism of hyperexcitability in medial entorhinal cortex layer II 
stellate cells motivated by experimental findings in [23,38]. We used self-excited cells mimicking a population of recurrently 
excited cells synchronized in phase. We showed that the firing frequency is maintained constant or slightly decreases for 
increasing values of the maximal synaptic conductance (Gex) within some relatively large range, above which an abrupt 
increase in firing frequency to a significantly large value occurs (Fig. 1-b1). The firing frequency gradually increases for 
values of Gex above this abrupt transition. The interaction between the decay time of excitation and the effective intrinsic 
time scales generated by the persistent sodium and the hyperpolarization-activated currents is crucial for this phenomenon. 
Synaptic inhibition acts as a switch between the two firing frequency regimes. In [13] we have carried out a thorough 
comparative study of the classes of models that produce these two qualitatively different types of behavior, and we have 
extended our results to minimal, two-cell network models.

The goal of this paper is to extend our results to larger networks. Specifically, we examine whether the gradual and 
abrupt transition between low and high firing frequencies generated by the two classes of models described above persist in 
larger, recurrently excited networks. In addition, we examine the similarities and differences between the patterns generated 
by these two classes of models in these larger networks. Finally, we investigate the role of synaptic delays in stabilizing the 
network activity in the high-frequency regime at lower spike frequencies than those for instantaneous synapses. Synaptic 
delays have been shown to play significant role in the generation of network coherent activity [39–47].

We use two models that are prototypical for the two modes of transitions between low and high firing frequencies: the 
integrate-and-fire (IF) model and the so-called Ih + INap model. The IF model has passive subthreshold dynamics (no active 
ionic currents) and exhibits gradual transitions (Fig. 1-a1). The Ih + INap model has persistent sodium and hyperpolarization-
activated (h-) currents and exhibits abrupt transitions (Fig. 1-b1). For simplicity we focus on networks with ring topologies 
where each cell is only connected to its nearest neighbors. Our results provide the basis for the investigation of networks 
with more complex connectivity patterns and more general model types.

2. Methods

Neurons are modeled using the Hodgkin–Huxley (conductance-based) formalism [48]. The current-balance equation in 
the subthreshold voltage regime is given by

C
dV

dt
= −I L −

∑

j

Iion, j + Iapp, (1)

where V is the membrane potential (mV), t is time (msec), C is the membrane capacitance (μF/cm2), Iapp is the applied 
bias (DC) current (μA/cm2), I L = G L (V − E L) is the leak current, and Iion, j are ionic currents of the form

Iion, j = G j ma
j hb

j (V − E j) (2)

with activation and inactivation gating variables m j and h j respectively, maximal conductances G j (mS/cm2), reversal po-
tentials E j (mV), and constants a ≥ 0 and b ≥ 0. All gating variables x obey a first order differential equation of the form

dx

dt
= x∞(V ) − x

τx(V )
(3)

where x∞(V ) and τx(V ) are the voltage-dependent activation/inactivation curves and time-constants respectively.
The models used in this paper do not contain a biophysical description of the spiking dynamics, which is usually gener-

ated by the interplay of a transient sodium and delayed-rectifier potassium currents [4]. Instead, spikes are added artificially 
once the voltage has reached a threshold value V th . The artificial spikes have the form 60 e−2(t−tspk) for t ∈ [tspk, tspk + �spk)

where tspk is a given spike time and �spk is the spike duration, which was set to be equal to 1 msec. The variables V
and x are reset at t = tspk + �spk to V rst and xrst respectively. In the leaky integrate-and-fire (IF) model V th is part of the 
mechanism for spike generation. In contrast, the persistent sodium/h-current (Ih + INap) model (described below) describes 
the onset of spikes and V th only indicates their occurrence.

For the (IF) model [4] the subthreshold dynamics are described by eq. (1) with Iion = 0. We used the following pa-
rameter values: C = 1, E L = −65, G L = 0.025, V th = −50, V reset = −70. Additional parameter values are provided in the 
corresponding figures.

The Ih + INap model is an adaptation of the reduced model derived in [49] from the fully spiking model introduced 
in [50]. The subthreshold dynamics are described by eqs. (1)–(3) with a persistent sodium current and an h-current given 
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