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Dynamic programming algorithms for comparing multineuronal
spike trains via cost-based metrics and alignments
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Abstract

Cost-based metrics formalize notions of distance, or dissimilarity, between two spike trains, and are applicable to single- and multineuronal
responses. As such, these metrics have been used to characterize neural variability and neural coding. By examining the structure of an efficient
algorithm [Aronov D, 2003. Fast algorithm for the metric-space analysis of simultaneous responses of multiple single neurons. J Neurosci Methods
124(2), 175–79] implementing a metric for multineuronal responses, we determine criteria for its generalization, and identify additional efficiencies
that are applicable when related dissimilarity measures are computed in parallel. The generalized algorithm provides the means to test a wide range
of coding hypotheses.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Spike train metrics (Victor and Purpura, 1996, 1997) are used
to characterize neural variability and neural coding in a range
of neurophysiologic contexts, especially sensory systems; see
recent review by Victor (2005). Metric approaches formalize
spike train neural activity as a sequence of events (Segundo and
Perkel, 1969). This viewpoint contrasts with two ways to repre-
sent neural activity in a vector space: as a rate (i.e., a continuous
function of time) or as a function of discretely sampled time
(Rieke et al., 1997). The choice of viewpoint has implications
for the overall approach to data analysis. Vector spaces (includ-
ing spaces of time series) have a natural means of defining a
Euclidean “distance”, based on their inner (scalar) product. In
contrast, distances that naturally arise from sequence compar-
isons are typically non-Euclidean (Aronov and Victor, 2004).
Non-Euclidean distances are necessary to account for some
aspects of neural coding (Hopfield, 1995; Wuerger et al., 1995).

However, non-Euclidean distances determined by spike train
metrics are more difficult to compute than distances in a vector
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space. For sequences of activity of a single neuron, the algorith-
mic problem for a simple spike train metric, Dspike[q], where
q is the cost per unit time for moving a spike, is closely analo-
gous to that of biological sequence comparison (Needleman and
Wunsch, 1970; Sellers, 1974), and a very similar dynamic pro-
gramming algorithm is applicable (Victor and Purpura, 1996,
1997). Computational complexity is M2, where M is the typical
number of spikes in the responses to be compared. Multineu-
ronal activity, recordings of which are becoming more and more
widely available (Gray et al., 1995; Kralik et al., 2001; Nicolelis
et al., 2003), can be considered as a sequence of labeled events
(in which the label indicates the neuron of origin). The metric-
space method readily extends to this context (Aronov et al.,
2003; Samonds and Bonds, 2004). A straightforward extension
of the algorithm for the single-neuron metric Dspike[q] leads to
an algorithm for a simple multineuronal metric, Dspike[q, k]. This
algorithm has a computational complexity of M2L, where L is
the number of distinct neurons. Recently, Aronov (2003) dra-
matically improved this to ML+1, via a dynamic-programming
algorithm that treats the compared spike trains asymmetrically.

Generically, spike train metrics have parameters that indicate
the extent to which the metric is sensitive to various features
of the spike train (e.g., sensitivity to timing in Dspike[q] and
Dspike[q, k] is determined by q, and sensitivity to neuron of ori-
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gin in Dspike[q, k] is determined by k). In this paper, we extend
this algorithm to a wide range of single- and multineuronal spike
train metrics. We also show how the algorithm can be modified
to calculate spike train metrics for many values of the param-
eters in an efficient manner. As part of an ongoing effort to
provide information-theoretic tools to the neuroscience commu-
nity, implementations of algorithms for Dspike[q] and Dspike[q,
k] described below are available in the Spike Train Analysis
Toolkit (Goldberg et al., 2005) and can be obtained from the
website http://neuroanalysis.org.

After some preliminary definitions, we review the notion of a
cost-based metric, and then consider a partially distinct approach
to define dissimilarities of event sequences, based on “align-
ments.” We observe that the intersection of cost-based metrics
and alignments includes the basic multineuronal cost-based
spike time metric Dspike[q, k]. As we then show, the efficient
dynamic programming algorithm (Aronov, 2003) for Dspike

[q, k], when viewed as an algorithm to identify alignments,
is capable of substantial generalization. We then comment on
matters of implementation and provide examples.

2. Results

2.1. Preliminaries

A spike train (a neural response) is considered to be a
sequence of events, each occurring at a specific time and associ-
ated with a discrete label (the neuron of origin). More formally,
a spike train A is a sequence of M(A) spike times A1, A2, . . .,
AM(A), each with an associated label, a1, a2, . . ., aM(A). The spike
times Ak are non-decreasing real numbers, and may coincide.
The labels are drawn from a set {1, . . ., L} of abstract tags. We
use A[w] to denote the subsequence of A that includes just the
spikes associated with a label w. Thus, M(A[w]) is the number
of spikes in A with the label w. We also use �M(A) to denote
a vector whose wth element is M(A[w]). A spike train is the
disjoint union of its subtrains A[w], i.e.,

L⋃
w=1

A[w] = {A1, . . . , AM(A)}, and
L∑

w=1

M(A[w]) = M(A).

2.2. Metrics, alignments, and strains

We will consider two ways to measure dissimilarity between
two spike trains A and B. The first, “cost-based metrics” (Victor,
2005; Victor and Purpura, 1996, 1997) is based on a set of ele-
mentary transformations between spike trains. Each elementary
transformation (e.g., deleting a spike, inserting a spike, shifting a
spike in time, or changing the label of a spike) is associated with a
cost. In a cost-based metric, the distance (dissimilarity) between
two spike trains is the minimum total cost of any sequence of
elementary steps that transforms A into B.

The second way of measuring dissimilarity is based on the
notion of an alignment between two spike trains, X(A, B) (or
simply X). An alignment (Fig. 1A) indicates a correspondence
between the components of spike train A and those of spike train

Fig. 1. (A) A candidate alignment of two multineuronal spike trains. The neuron
of origin (the “label”) of each spike is indicated by shading, and an alignment
consists of links between pairs of individual spikes. An alignment may link
spikes from different neurons, and all spikes need not be linked. The alignment
shown is not necessarily an “efficient” alignment, but is typical of one considered
by the dynamic programming algorithm (Aronov, 2003) for Dspike[k, q]. (B) A
necessary, but not sufficient, condition for an efficient alignment. The subtrains
of spike train B are separated into individual parallel lines. This defines a unique
plane for each label w, containing the subtrain B[w] and the full train A. In each
plane (i.e., the plane of links in which the second member of each pairing comes
from the same subtrain B[w]) links cannot intersect. For further details, see text.
Adapted from Aronov (2003) with permission.

B, via a set of links between pairs of spikes. As shown in Fig. 1A,
an alignment may leave some spikes unlinked in one or both of
the two trains. We will assign a strain to each alignment, and
the measure of dissimilarity between A and B will be taken to
be the smallest strain of all possible alignments X(A, B).

We will restrict consideration to strains that depend only
on the number of unlinked spikes and on the time differences
between the spikes connected by the links. We will further
restrict consideration to strains in which these components com-
bine additively. More formally, we will consider strains of the
form

S(X(A, B)) =
L∑

w=1

I1,w(U1,w) +
L∑

w=1

I2,w(U2,w)

+
L∑

w1=1

L∑
w2=1

∑
j

Jw1,w2

(∣∣Tw1,w2,j

∣∣) . (1)

In this equation, U1,w and U2,w are the number of unlinked
spikes of label w in each train, and T is a table of lists Tw1,w2,j

of the time differences between linked spikes of label w1 in A
and label w2 in B. I1,w and I2,w are non-decreasing functions
that determine the contribution to the strain of unpaired spikes of
each label (w) in each train (1 for A, 2 for B). Similarly, Jw1,w2 (t)
is a non-decreasing function that determines the contribution to
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