
Science of Computer Programming 106 (2015) 78–92

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Correctness issues on MARTE/CCSL constraints

Frédéric Mallet a,b,c,d,∗, Robert de Simone b,d

a Université Nice Sophia Antipolis, France
b INRIA Sophia Antipolis Méditerranée, France
c East China Normal University, Software Engineering Institute, China
d I3S Laboratory, UMR 7271 CNRS, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 April 2013
Received in revised form 24 February 2015
Accepted 2 March 2015
Available online 5 March 2015

Keywords:
Logical time
Architecture-driven analysis
UML MARTE
Reachability analysis

The UML Profile for Modeling and Analysis of Real-Time and Embedded systems promises 
a general modeling framework to design and analyze systems. Lots of works have 
been published on the modeling capabilities offered by MARTE, much less on available 
verification techniques. The Clock Constraint Specification Language (CCSL), first introduced 
as a companion language for MARTE, was devised to offer a formal support to conduct 
causal and temporal analysis on MARTE models.
This work relies on a state-based semantics for CCSL to establish correctness properties on 
MARTE/CCSL specifications. We propose and compare two different techniques to build 
the state-space of a specification. One is an extension of some previous work and is 
based on extended finite state machines. It relies on integer linear programming to solve 
the constraints and reduce the state-space. The other one is based on an intentional 
representation and uses pure Boolean abstractions but offers no guarantee to terminate 
when the specification is not safe.
The approach is illustrated on one simple example where the architecture plays an 
important role. We describe a process where the logical description of the application is 
progressively refined to take into account the execution platform through allocation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Unified Modeling Language (uml 2.x) proposes a simplistic and informal model of time, called Simple Time. This 
model has been extended in the uml Profile for Modeling and Analysis of Real-Time and Embedded systems [1] (marte), 
adopted in November 2009. marte introduces a richer Time model [2] general enough to support different forms of time 
(discrete or dense, chronometric or logical). Its so-called clocks allow enforcing as well as observing the occurrences of 
events and the behavior of annotated uml elements. The Clock Constraint Specification Language (ccsl) has been initially 
defined in an annex of the marte specification to provide a concrete syntax for handling these logical clocks as first-class 
citizens. It was endowed with a formal operational semantics [3] to breathe life into uml models by defining synchronization 
and coordination schemes between the various modeling elements.

The operational semantics of ccsl is adequate to build a simulation framework, like TimeSquare [4]1 but less appropriate 
to conduct exhaustive analyzes. We rely for that purpose on a state-based semantics to establish correctness properties on

* Corresponding author at: Université Nice Sophia Antipolis, France.
E-mail address: Frederic.Mallet@unice.fr (F. Mallet).

1 http :/ /timesquare .inria .fr.

http://dx.doi.org/10.1016/j.scico.2015.03.001
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.03.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:Frederic.Mallet@unice.fr
http://timesquare.inria.fr
http://dx.doi.org/10.1016/j.scico.2015.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.03.001&domain=pdf


F. Mallet, R. de Simone / Science of Computer Programming 106 (2015) 78–92 79

ccsl specifications. A ccsl specification is called safe if and only if it can be represented with a finite state machine. Some 
of the ccsl constraints are not safe and their semantics can only be captured with an infinite number of states or a finite 
symbolic representation of these infinite states. In a previous work [5], we have proposed to use extended state machines, 
i.e., finite state machines extended with (unbounded) integer variables, to capture the semantics of unsafe constraints. 
This abstraction leads to the generation of observers for simulation or model-checking verification. This abstraction is very 
convenient since it does not need to assume that the specification is actually safe. In [6] we have proposed an algorithm 
to detect safe specifications. Having that we propose an alternative solution that does not rely on extended finite state 
machines but rather on an intentional data structure. In this paper, we propose an extension of [5] with state invariants to 
further reduce the size of the product. Then, we describe the alternative solution. Both solutions have advantages and flaws 
that are explored in details.

Building the synchronized product of a ccsl specification is key to conduct model-checking on properties. Indeed, we 
also discuss some classical liveness issues that may arise with ccsl specifications and that can actually be checked with our 
proposal. Safety and liveness issues are illustrated on a simple example borrowed from aadl and in which the platform, the 
architecture and the binding are captured in marte/ccsl.

Section 2 starts with a positioning with respect to related works. Section 3 gives some background about ccsl and 
transition systems for clock systems. Section 4 is the main part of the contribution. It discusses first the solution relying 
on extended finite state machines and integer linear programming. Second, it compares it to another solution relying on 
purely Boolean analysis and using an intentional data structure. Section 5 gives an illustrative example and discusses typical 
correctness properties.

2. Related work

Logical clocks have been introduced in distributed systems [7] to loosely synchronize communicating systems and order 
their events. This appealing concept of logical clock is central in many contexts and for several purposes, including in 
process networks or in Petri nets [8], however its usage in ccsl is mainly inspired from their central role as activation 
conditions in Synchronous languages [9,10]. Compared to Lamport’s clocks, synchronous languages introduce the notion of 
atomic reaction (also called instant) in which several events occur simultaneously. Consequently, the behavior of a system 
can be defined based on what has happened during the reaction, but also on what has NOT happened, hence leading to the 
so-called reaction to absence. ccsl operators forbid the occurrence of some events based on what has happened or not in 
previous reactions.

Whereas usually in synchronous languages, the programmer handles signals (sequences of values) as a primitive con-
struct, the notion of signals does not exist in ccsl and the language only focuses on the clocks themselves. In synchronous 
languages, clocks tend to be handled mainly by the compiler, through the process called clock calculus, to decide when the 
values are valid and when the computations must be performed. In Lustre [11], clocks of inputs are usually given indirectly 
while in Esterel [9] they are rarely handled explicitly by the programmer. In polychronous extensions, like Signal [12], the 
clocks constrain the system to become endochronous, when the system is underspecified. ccsl was devised as a language 
focusing on clocks independently of signals and values.

Later, the notion of tag system [13] and then tag structure [14] was proposed as a mathematical framework to compare 
models of computations and orchestrate heterogeneous models. ccsl provides a concrete syntax [15] for building such 
orchestration models by focusing only on clocks (or tags) and not on values.

Initially the operational semantics of ccsl was given as a set of rewriting rules [3] in order to build a simulation engine 
that performs the clock calculus dynamically on the fly. To conduct exhaustive analyzes on ccsl specifications we propose 
to encode the semantics using transition systems. Some ccsl operators cannot be represented with finite transition systems 
and symbolic representations must be proposed to deal with these so-called unsafe operators. In [5], finite state machines 
extended with unbounded integer variables were proposed for that purpose. Integer variables symbolically captured the 
infinite number of states. We consider in this paper an alternative encoding that maintains an intentional representation of 
the infinite transition systems and that expands them on-demand when the synchronized product is built. The contribution 
of this paper is to compare the two alternative approaches and to discuss solutions to establish correctness properties on
ccsl specifications.

Clearly, the proposed structure comes close to pushdown automata. The literature is abundant on pushdown automata 
(PDA). The class needed here is strictly weaker than PDA since the operations on the stack are very limited. Indeed, the 
stack would just be used for counting (+1, −1, zero-test). Counter automata [16,17] appears to be a subclass closer to 
our needs. The reachability problem for counter-automata has been studied a lot and subclasses for which reachability is 
decidable have been identified [18,19]. A naive encoding of ccsl in counter automata would probably result in having one 
counter per clock or at least one counter per clock domain. Such an encoding is out of the scope of this paper. Relying 
on acceleration techniques [20] to compute the reachability set from a ccsl specification is clearly an interesting problem 
that is also beyond the goals of this contribution. This paper does not propose a new mathematical abstraction but rather 
explores two practical solutions to conduct exhaustive verifications on ccsl specifications.

Several attempts have been made before to perform exhaustive analyses of ccsl specifications. Gaston et al. [21] proposed 
an encoding as Büchi automata to compare the expressiveness of ccsl with temporal logics. Yin et al. [22] proposed to 
encode ccsl operators in Promela to perform model-checking with the SPIN model-checker. In both attempts, only a safe 



Download English Version:

https://daneshyari.com/en/article/433667

Download Persian Version:

https://daneshyari.com/article/433667

Daneshyari.com

https://daneshyari.com/en/article/433667
https://daneshyari.com/article/433667
https://daneshyari.com

