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Abstract

In many experimental designs, animal observation is associated with local field potential (LFP) recordings in order to find correlations between
behavior dynamics and neuronal activity. In such cases, relevant behaviors can occur at different times during free-running recordings and should
be put together by the time of analysis. Here, we developed a MATLAB semi-automated toolbox to quantitatively analyze the temporal progression
of brain oscillatory activity in multiple free-running LFP recordings obtained during spontaneous behaviors. The algorithm works by selecting
LFP epochs at user-defined onset times (locked to behavior, drug injection time, etc.), calculates their time–frequency spectra, detects long-
lasting oscillatory events and calculates linear coherence between pair of electrodes. As output, it generates several table-like text and tiff image
files, besides group descriptive statistics. To test the algorithm, we recorded hippocampus and amygdala LFPs from rats in different behavioral
states: awake (AW), sleep (SWS, slow-wave sleep and REMS, rapid-eye movement sleep) and tonic–clonic seizures. The results show that the
software reliably detects all oscillatory events present in up to seven user-defined frequency bands including onset/offset time and duration. It also
calculates the global spectral composition per epoch from each subject and the linear coherence (with confidence intervals) as a measure of spectral
synchronization between brain regions. The output files provide an easy way to do within-subject as well as across-subject analysis. The routines
will be freely available for downloading from our website http://www.neuroimago.usp.br/BPT/.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Quantitative EEG analysis; Time–frequency analysis; Epilepsy; Sleep; Hippocampus; Amygdala

1. Introduction

Brain oscillatory activity is a property of both local and dis-
tributed neural networks found in cortical/sub-cortical circuitries
(Cantero and Atienza, 2005). It is commonly generated by the
coordinated activity of interconnected excitatory and inhibitory
neurons, which produce regular oscillations of field extracel-

Abbreviations: AW, awake; bTFR, binarized time–frequency representa-
tion; EEG, electroencephalogram; LFP, local field potential; REMS, rapid-eye
movement sleep; STFT, short-time Fourier transform; SWS, slow-wave sleep;
TFR, time–frequency representation.
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lular potentials. Distinct oscillatory patterns are associated to
different physiological states (awake, sleep, sedation), percep-
tual representations (visual, auditory) and cognitive processes
(attention, learning and memory) (Cantero and Atienza, 2005;
Gross et al., 2001; Steriade, 1997).

The correlation between a neurophysiological measurement
and a behavioral response has shown to be a successful and pro-
ductive approach to investigate the neural networks underlying
many behaviors (Jensen et al., 2002; Makeig et al., 2004). How-
ever, it is deeply dependent on the availability of objective and
quantitative analytical methods to handle and extract the relevant
information from the experimental data. It requires automated
algorithms to deal with a large amount of recordings that usually
contain a high degree of redundancy and eventual artifacts.

The implantation of microelectrodes for local field potential
(LFP; or deep EEG) recordings in rodents is a widely used elec-
trophysiological technique to measure the electrical activity state
of a brain region and is often used to correlate neural circuitry

0165-0270/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jneumeth.2007.08.027

http://www.neuroimago.usp.br/BPT/
mailto:rnrpereira@rnp.fmrp.usp.br
mailto:draulio@biomag.usp.br
dx.doi.org/10.1016/j.jneumeth.2007.08.027


R.N. Romcy-Pereira et al. / Journal of Neuroscience Methods  167 (2008) 384–392 385

activation and behavior. As LFPs and behaviors are intrinsically
dynamic variables, they require analytical tools that preserve
their temporal information. LFPs are locally recorded and can
be partially characterized by their frequency components and
associated durations. Similarly, behaviors change with time and
therefore, they have duration. However, the animal’s phenotypic
expression is a qualitative categorical variable.

Different methods can be used to obtain the spectral decom-
position of a signal (Drongelen, 2006). In contrast to the
traditional Fourier transform, the spectral analysis using the
wavelet transform presents several advantages regarding the
combined study of the time and frequency domains. Importantly,
it presents a better resolution trade-off between the spectral
decomposition of LFPs calculated at each time point than
the Fourier analog, the Short-Time Fourier Transform (STFT)
(Tallon-Baudry et al., 1997). Moreover, the most commonly used
quantitative output parameters calculated are the oscillating fre-
quency at a certain time and its spectral power. In many instances
when two or more signals are analyzed, the coherence function
is calculated to estimate the degree of linear correlation between
the signals at specific frequencies (Challis and Kitney, 1991).

Our laboratory has traditionally studied the behavioral
expression of epileptic seizures by analyzing the interaction
between behavioral components during ictal episodes (Dal-Cól
et al., 2006; Garcia-Cairasco et al., 1996). The introduction of
the simultaneous recording of LFPs and ictal behaviors through
video-EEG recordings prompted us to develop an analytical
tool to evaluate the spectral time course of specific behav-
iors. To put LFPs and behaviors together, we decided to use
a time–frequency spectral analysis using the wavelet transform
and calculate useful quantitative output parameters such as the
sustained frequency (onset, offset and duration) that could be
correlated with the annotated behaviors. Some of these param-
eters had already been used in the literature (Drongelen, 2006).
Therefore, we present here an easy to use and freely available
algorithm able to extract epochs from multiple full-length files,
to help the user to exclude epochs with artifacts and to calculate
the time-varying power spectra on a large set of data. The algo-
rithm was tested in well-known datasets whose behaviors were
previously determined.

2. Materials and methods

2.1. Algorithm

All routines were written in Matlab 6.5 R13 (Mathworks Inc,
MA, USA). The algorithm consists of five steps and routine
names are shown in parenthesis.

I Epoch Selection, Extraction and Artifact Rejection
(epoch select and epoch display).

II Wavelet Time–Frequency Analysis (timefreq sust).
III Calculation of Sustained Oscillations and Frequency Peaks

(timefreq sust).
IV Calculation of Across-Subjects Statistics (analysis).
V Calculation of Coherence and Confidence Intervals (cohere-

boot).

2.1.1. Epoch selection, extraction and artifact rejection
The first step of the analysis consists in processing the

behavior timetable data. Based on the timetable obtained dur-
ing the observation of animal’s performance, the experimenter
will define relevant LFP segments to be analyzed. The routine
epoch select reads LFP recordings as text files and generates
fixed-length epoch files at user-defined onset times. The rou-
tine epoch display displays extracted epochs on the computer
screen for visual inspection. By checking all epoch segments
on the computer screen, the user can exclude artifact-containing
files from the working folder and proceed with the analysis. It
is important to stress that epoch extraction is a fully automated
task and can be used on multiple files. Artifact rejection has to
be done manually.

Input parameters: dataset name, epoch duration, onset times.
Output: epoch text files, matlab figure and tiff image with all
extracted epochs to be displayed on the computer screen.

2.1.2. Wavelet time–frequency analysis
Time–frequency representation (TFR) of biological signals

has important applications in the study of behavioral dynamics.
The most intuitive form to simultaneously accomplish time and
frequency analysis of a signal is to segment the time series into
small fragments (windows) and calculate their spectrum, the
so-called Short-Time Fourier Transform (STFT):

STFT(t, ω) =
∫

[x(τ) −W(τ − t)] e−jωτ dτ,

where W is the sliding window used to segment the signal.
By computing the STFT of a signal, also known as spectro-

gram, a power spectrum is obtained for different displacements
in time t, segmented by the window W. The spectrogram shows
how the energy of the signal is distributed both in time and
in frequency and, is typically visualized as an image. In such
analysis, the size and type of the chosen window is of funda-
mental importance. However, as the resolution in time increases
(i.e., the length of W decreases), one loses accuracy in the fre-
quency component. Such limitation of the STFT gave rise to
the development of alternatives, such as the Wavelet analysis.
This method provides a better compromise between time and
frequency resolution (Jensen et al., 2002; Tallon-Baudry et al.,
1997).

Wavelets are mathematical functions, ψ(t) that satisfy spe-
cific requirements. They should (1) decay rapidly as t → ±∞,
(2) be zero mean, and (3) have a Fourier transform, ψ̂(ω) that
obeys the following condition:
∫ +∞

0

|ψ̂(ω)|2
ω

dω =
∫ 0

−∞
|ψ̂(ω)|2

|ω| dω = Cψ < +∞

There are many types of wavelets, also known as basis. In
this study, we used Morlet wavelet basis for calculating TFRs
according to the expression:

w(f0, t) = Aϕ · e−t2/2σ2
t · ei2πf0t ,

where σt = 1/2πσf is the time of the wavelet and σf is its fre-
quency.
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