
Theoretical Computer Science 625 (2016) 1–24

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A complete refinement procedure for regular separability of 

context-free languages

Graeme Gange a, Jorge A. Navas b, Peter Schachte a, Harald Søndergaard a,∗, 
Peter J. Stuckey a

a Department of Computing and Information Systems, The University of Melbourne, Vic. 3010, Australia
b NASA Ames Research Center, Moffett Field, CA 94035, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 December 2014
Received in revised form 14 December 2015
Accepted 12 January 2016
Available online 27 January 2016
Communicated by D. Sannella

Keywords:
Abstraction refinement
Context-free languages
Regular approximation
Separability

Often, when analyzing the behaviour of systems modelled as context-free languages, we 
wish to know if two languages overlap. To this end, we present a class of semi-decision 
procedures for regular separability of context-free languages, based on counter-example 
guided abstraction refinement. We propose two effective instances of this approach, 
one that is complete but relatively expensive, and one that is inexpensive and sound, 
but for which we do not have a completeness proof. The complete method will prove 
disjointness whenever the input languages are regularly separable. Both methods will 
terminate whenever the input languages overlap. We provide an experimental evaluation 
of these procedures, and demonstrate their practicality on a range of verification and 
language-theoretic instances.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We address the problem of checking whether two given context-free languages L1 and L2 are disjoint. This is a funda-
mental language-theoretical problem. It is of interest in many practical tasks that call for some kind of automated reasoning 
about programs. This can be because program behaviour is modelled using context-free languages, as in software verifica-
tion approaches that try to capture a program’s control flow as a (pushdown-system) path language. Or it can be because 
we wish to reason about string-manipulating programs, as is the case in software vulnerability detection problems, where 
various kinds of injection attack have to be modelled.

The problem of context-free disjointness is of course undecidable, but semi-decision procedures exist for non-
disjointness. For example, one can systematically generate strings w over the intersection �1 ∩�2, where �1 is the alphabet 
of L1 and �2 is that of L2. If some w belongs to both L1 and L2, answer “yes, the languages overlap.” It follows that no 
semi-decision procedure exists for disjointness. However, semi-decision procedures exist for the stronger property of being 
separable by a regular language. For example, one can systematically generate (representations of) regular languages over 
�1 ∪ �2, and, if some such language R is found to satisfy L1 ⊆ R ∧ L2 ⊆ R , answer “yes, the languages L1 and L2 are 
disjoint”.

* Corresponding author.
E-mail addresses: gkgange@unimelb.edu.au (G. Gange), jorge.a.navaslaserna@nasa.gov (J.A. Navas), schachte@unimelb.edu.au (P. Schachte), 

harald@unimelb.edu.au (H. Søndergaard), pstuckey@unimelb.edu.au (P.J. Stuckey).

http://dx.doi.org/10.1016/j.tcs.2016.01.026
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.01.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gkgange@unimelb.edu.au
mailto:jorge.a.navaslaserna@nasa.gov
mailto:schachte@unimelb.edu.au
mailto:harald@unimelb.edu.au
mailto:pstuckey@unimelb.edu.au
http://dx.doi.org/10.1016/j.tcs.2016.01.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.01.026&domain=pdf


2 G. Gange et al. / Theoretical Computer Science 625 (2016) 1–24

A radically different approach, which we will follow here, uses so-called counter-example guided abstraction refinement 
(CEGAR) [6] of regular over-approximations. The scheme is based on repeated approximation refinement, as follows:

1. Abstraction: Compute regular approximations R1 and R2 such that L1 ⊆ R1 and L2 ⊆ R2. (Here R1 and R2 are regular 
languages, represented using regular expressions or finite-state automata.)

2. Verification: Check whether the intersection of R1 and R2 is empty using a decision procedure for regular languages. 
If R1 ∩ R2 = ∅ then L1 ∩ L2 = ∅, so answer “the languages are disjoint.” If w ∈ (R1 ∩ R2), w ∈ L1, and w ∈ L2 then 
L1 ∩ L2 	= ∅, so answer “the languages overlap” and provide w as a witness. Otherwise, go to step 3.

3. Refinement: Produce new regular approximations R ′
1 and R ′

2 such that L1 ⊆ R ′
1 ⊆ R1, L2 ⊆ R ′

2 ⊆ R2, and R ′
i ⊂ Ri for 

some i ∈ {1, 2}. Tighten the approximations by performing the assignments R1, R2 ← R ′
1, R

′
2; then go to step 2.

For the abstraction step, note that regular approximations exist, trivially. For the verification step, we could also take advan-
tage of the fact that the class of context-free languages is closed under intersection with regular languages; however, this 
does not eliminate the need for a refinement procedure. For the refinement step, note that there is no indication of how the 
tightening of approximations should be done; indeed that is the focus of this paper. The step is clearly well-defined since, 
if L ⊂ R , where R is regular, there is always a regular language R ′ ⊂ R such that L ⊆ R ′ .

For a given language L there may well be an infinite chain R1 ⊃ R2 ⊃ · · · ⊃ L of regular approximations. This is a source 
of possible non-termination of a CEGAR scheme. An interesting question therefore is: Are there refinement techniques that 
can guarantee termination at least when L1 and L2 are regularly separable context-free languages, that is, when there exists 
a regular language R such that L1 ⊆ R and L2 ⊆ R?

In this paper we answer this question in the affirmative. We propose a refinement procedure which can ensure termina-
tion of the CEGAR-based loop assuming the context-free languages involved are regularly separable. In this sense we provide 
a refinement procedure which is complete for regularly separable context-free languages. Of course the question of regular 
separability of context-free languages is itself undecidable [16]. The method we propose will also successfully terminate 
whenever the given languages overlap.

The method has been implemented in the form of a tool called covenant [10]. This tool is publicly available at https://
github.com/sav-tools/covenant and is, as far as we know, the only publicly available implementation tackling the problem 
of (soundly) proving separation of context-free grammars.

Contribution The paper rests on regular approximation ideas by Nederhof [23] and we utilise the efficient pre∗ algorithm [9]
for intersecting (the language of) a context-free grammar with (that of) a finite-state automaton. We propose various ways 
to systematically “inflate” a word w in the context of a language L, that is, to enlarge {w} to a (preferably infinite) superset 
without overlapping L. Based on such inflation techniques, we propose a novel refinement procedure for a CEGAR-like 
method to determine whether context-free languages are disjoint, and we prove the procedure complete for determining 
regular separability. In the context of regular approximation, where languages must be over-approximated using regular
languages, separability is equivalent to regular separability, so the completeness means that the refinement procedure is 
optimal. On the practical side, the method has important applications in software verification and security analysis. We 
demonstrate its feasibility through an experimental evaluation of covenant.

Outline Section 2 introduces concepts, notation and terminology used in the paper. It also recapitulates relevant results 
about regular separability and language representations. Section 3 describes a CEGAR-based refinement procedure for sep-
arating context-free languages by inflating counterexamples into regular languages. Section 4 then describes a number of 
strategies for word inflation. Section 5 provides an example. In Section 6, we construct a proof that the procedure will termi-
nate for any pair of regularly separable or intersecting languages. In Section 7 we place our method in context, comparing 
with previously proposed refinement techniques. In Section 8 we evaluate the method empirically, comparing covenant

with the most closely related tool. Section 9 discusses more broadly related work, and Section 10 concludes. An appendix 
contains a description of the test cases used in the experimental evaluation.

2. Preliminaries

In this section we recall the some basics, including the notion of regular separability. Table 1 gives a glossary of notation 
used in the paper.

2.1. Regular and context-free languages

We first recall some basic formal-language concepts. These are assumed to be well understood—the only purpose here 
is to fix our terminology and notation. We shall be developing algorithms that, conceptually, manipulate formal languages, 
that is, sets of symbol strings. However, the algorithms in fact manipulate representations of languages, such as regular 
expressions or grammars, or language recognisers, such as finite-state automata. Hence we will be careful to distinguish 
objects such as automata or grammars, on the one hand, from their denotations. We shall use the function symbol L for 
the function that, applied to some object X , gives the language denoted/generated/recognised by X . In the case of regular 

https://github.com/sav-tools/covenant
https://github.com/sav-tools/covenant


Download English Version:

https://daneshyari.com/en/article/433677

Download Persian Version:

https://daneshyari.com/article/433677

Daneshyari.com

https://daneshyari.com/en/article/433677
https://daneshyari.com/article/433677
https://daneshyari.com

