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We present a new Curry–Howard correspondence for classical first-order natural deduction. 
We add to the lambda calculus an operator which represents, from the viewpoint of 
programming, a mechanism for raising and catching multiple exceptions, and from the 
viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery 
will allow to extend the idea of learning – originally developed in Arithmetic – to pure 
logic. We prove that our typed calculus is strongly normalizing and show that proof terms 
for simply existential statements reduce to a list of individual terms forming an Herbrand 
disjunction. A by-product of our approach is a natural-deduction proof and a computational 
interpretation of Herbrand’s Theorem.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the midst of an age of baffling paradoxes and contradictions, during the heat of a harsh controversy between opposed 
approaches to foundations of mathematics – infinitism vs. constructivism – a new and really penetrating insight was re-
quired to see a way out. Hilbert’s proposed solution, at the beginning of twentieth century, was certainly deep and brilliant. 
According to him, there was no contradiction between classical and intuitionistic mathematics, because the ideal objects 
and principles that appear in classical reasoning can always be eliminated from proofs of concrete, incontestably meaning-
ful statements. Hilbert’s idea was made precise in his epsilon elimination method (see [25,22]), a systematic procedure to 
eliminate ideal objects from classical proofs and reduce every logical step to a concrete calculation. Hilbert’s program was 
to show the termination of his method, or variants thereof, initially for first-order classical logic, then Peano Arithmetic 
and finally Analysis. As it turned out, Hilbert was right, and some termination proofs have been provided for example by 
Ackermann (for a modern proof see [24]) and Mints [23].
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1.1. Herbrand’s and Kreisel’s Theorems

After Hilbert, two other seminal results had been obtained stating that it is always possible to eliminate non-constructive 
reasoning in two important logical systems.

• The first one is Herbrand’s Theorem [10], which says that if a simply existential statement ∃α P is derivable in classical 
first-order logic from a set of purely universal premises, then there is a sequence of terms m1, m2, . . . , mk such that 
the Herbrand disjunction P[m1/α] ∨ P[m2/α] ∨ . . . ∨ P[mk/α] is provable in classical propositional logic from a set of 
instances of the premises.

• The second one is Kreisel’s Theorem [19], which says that if a simply existential formula ∃α P is derivable in classical 
first-order Arithmetic, then it is derivable already in intuitionistic first-order Arithmetic. Using Kreisel’s modified realiz-
ability [20] (or many other techniques), one can compute out of the intuitionistic proof a number n – a witness – such 
that P[n/α] is true, whenever P[n/α] it is closed.

Both Herbrand’s and Kreisel’s proof techniques are now obsolete, but the meaning of their results is as valid as ever, 
because it provides a theoretical justification for an important quest: the search for the constructive content of classical 
proofs. Herbrand’s Theorem tells us what is the immediate computational content of classical first-order logic: the list of 
witnesses contained in any Herbrand disjunction. Kreisel’s Theorem tells us what is the immediate computational content 
of first-order Arithmetic: the numeric witness for any provable existential statement. What is of great interest, in the light 
of those results, is to automatically transform proofs into programs in order to compute from any proof of any existential 
statement a suitable list of witnesses, in first-order logic, a single witness, in Arithmetic. In this paper, we shall address the 
first-order version of the problem – and propose a new solution.

1.2. Natural deduction and sequent calculus

The two most successful and most studied deductive systems for first-order logic are Gentzen’s natural deduction [27]
and Gentzen’s sequent calculus [15,14]. The first elegant constructive proof of Herbrand’s Theorem was indeed obtained as a 
corollary of Gentzen’s Cut elimination Theorem. Today, that proof is still the most cited and the most used. On the contrary, 
we even failed to find in the literature a complete proof of Herbrand’s Theorem using classical natural deduction. This is no 
coincidence, but yet another instance of the legendary duality between the two formalisms: as a matter of fact, some results 
are much more easily discovered and proved in the sequent calculus, while others are far more easily obtained in natural 
deduction. Since the time of Gentzen, natural deduction worked seamlessly for intuitionistic logic, and led to the discovery 
of the Curry–Howard correspondence [28], while sequent calculus was much more technically convenient in classical logic. 
As pointed out by [30], Gentzen’s motivation for the creation of sequent calculus was indeed that he was not able to prove 
a meaningful normalization theorem for classical natural deduction, whilst he was for the intuitionistic case. It indeed took 
a surprisingly long time to discover suitable reduction rules for classical natural deduction systems with all connectives [17]
(see also [7,28] for a more detailed history).

The great advantage of using natural deduction instead of sequent calculus is no mystery: it is natural! In Gentzen’s own 
words, the main aim of natural deduction was to “reproduce as precisely as possible the real logical reasoning in mathematical 
proofs” [30]. Indeed, when logically solving non-trivial problems, humans adopt forward reasoning, which is more adapted 
to proof-construction: one starts from some observations, draws some consequences and gradually combines them so as 
to reach the goal. All of that can be elegantly represented in natural deduction. On the other hand, sequent calculus is 
more suitable for machine-like proof-search: one starts from the final goal and applies mechanically logical rules to reach 
axioms. As a consequence, when analyzing real mathematical proofs so to investigate their constructive content, one prefers 
to use natural deduction. Moreover, the reduction of a proof into normal form is nothing but the evaluation of a functional 
program, and so very easy to understand. The cut-elimination process, instead, is far more involved and difficult to follow. 
For example, the proof of Herbrand’s Theorem by cut-elimination is deceptively simple: while it is rather obvious that the 
final cut-free proof contains an Herbrand disjunction, it is very painful to gain a step-by-step and clear understanding of 
how the corresponding list of witnesses has been produced.

1.3. Classical natural deduction: an exception-based Curry–Howard correspondence

We would like to endow classical first-order natural deduction with a natural set of reduction rules that also allows 
a natural, seamless proof of Herbrand’s Theorem. As a corollary, this system would also have a simple and meaningful 
computational interpretation. Indeed, we believe that one can say to really understand a theorem when one is able to 
construct a proof of it that, a posteriori, appears completely natural, almost obvious. Usually, that happens when one has 
created a framework of concepts and methods that explain the theorem.

1.3.1. EM1 and exceptions in arithmetic
If one wants to understand how is it possible that a classical proof has any computational content in the first place, 

the concept of learning is essential. It was a discovery by Hilbert that from classical proofs one can extract approximation 
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