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Abstract

One of the challenges in analyzing neuronal activity is to correlate discrete signal, such as action potentials with a signal having a continuous
waveform such as oscillating local field potentials (LFPs). Studies in several systems have shown that some aspects of information coding involve
characteristics that intertwine both signals. An action potential is a fast transitory phenomenon that occurs at high frequencies whereas a LFP
is a low frequency phenomenon. The study of correlations between these signals requires a good estimation of both instantaneous phase and
instantaneous frequency. To extract the instantaneous phase, common techniques rely on the Hilbert transform performed on a filtered signal,
which discards temporal information. Therefore, time—frequency methods are best fitted for non-stationary signals, since they preserve both time
and frequency information. We propose a new algorithmic procedure that uses wavelet transform and ridge extraction for signals that contain one
or more oscillatory frequencies and whose oscillatory frequencies may shift as a function of time. This procedure provides estimates of phase,
frequency and temporal features. It can be automated, produces manageable amounts of data and allows human supervision. Because of such

advantages, this method is particularly suitable for analyzing synchronization between LFPs and unitary events.
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1. Introduction

For about 10 years, the study of local field potentials (LFPs)
has received an increasing interest, particularly because such
signals appear to be relevant indicators of information process-
ing. LFPs, which are considered as the summation of excita-
tory and inhibitory dendritic potentials (Mitzdorf, 1987), are
often oscillatory. Oscillatory synchrony of LFPs between dif-
ferent cortical areas probably has a true functional role. Indeed,
it has been shown in human intra-cranial recordings that the

Abbreviations: LFP, local field potential; CWT, continuous wavelet trans-
form; WFT, windowed Fourier transform; LTRS, low time-resolution scalogram;
HTRS, high time-resolution scalogram; SPIPH, spike preferential instantaneous
phase histogram; SNR, signal to noise ratio
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holding of visual information in short-term memory is accom-
panied by oscillatory synchrony in the 3 band (15-20 Hz) across
distinct visual areas (Tallon-Baudry et al., 2001). In a similar
experiment in monkeys, two sites located over the posterior
infero-temporal cortex are synchronized in the 3 band during
a memory maintenance task in correct trials, while the syn-
chrony fails to develop in incorrect trials (Tallon-Baudry et al.,
2004). On the other hand, as LFP oscillations are supposed to
originate in the rhythmical synchronization of groups of neu-
rons (Mitzdorf, 1987), several teams have studied the temporal
relationship existing between oscillations and neuronal spike
discharges. It has thus, been reported that both activities can
become phase-locked under certain behavioral or perceptual
conditions (Murthy and Fetz, 1996; Fries et al., 2001; Siegel and
Konig, 2003). Hence, when studying the coherence between LFP
oscillations from different brain regions, or the synchronization
between spikes and LFP oscillations, the quantification of oscil-
lation phase becomes crucial and the results will depend on its
accuracy.
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The traditional Hilbert transform method for phase extraction
can only be applied after the signal has been Fourier-filtered
around the frequency band of interest if the signal contains
oscillations at different frequencies. Although this method is
very efficient, it has a major drawback as it suppresses all tem-
poral information. Indeed, the Fourier representation describes
the signal as a sum of infinite oscillations and mixes time and
frequency information. For non-stationary signal studies, many
time—frequency methods exist that analyze the local frequency
composition of the signal while preserving temporal information
(see Boashash, 1992a,b for review). Among these methods, para-
metric methods require the operator to have an insight into the
data: specifically, the operator needs to determine the frequency
range of the oscillatory phenomenon and/or the time boundaries
of the oscillatory epochs. Conversely, non-parametric methods
such as time—frequency representations (Flandrin, 1993) offer a
convenient setup, in which the problem of local amplitude esti-
mation is well understood and addressed, but only in the case
of single component signals (Boashash, 1992a,b; Delprat et al.,
1992). Further refinements of this setup, described by Carmona
et al. (1997), can be used to address multi-component or noisy
signal (Carmona et al., 1999). However, an important issue is the
computational cost of such methods. The time—frequency map
computation multiplies the original amount of data several folds,
which could rapidly saturate the computational capabilities of
any computer, rendering any further processing or human visual
check virtually impossible. This is particularly true in a situation
where a high sampling rate leads to a huge number of samples
and where, for each sample, precise phase and frequency infor-
mation is to be extracted.

Here, we propose a new algorithmic procedure, based on
wavelet ridge extraction (Delprat et al., 1992), to extract instan-
taneous frequency and instantaneous phase information from
signals sampled at high rate. This method is very robust even
when multiple oscillatory regimes are simultaneously present.
Moreover, it produces a computationally manageable amount of
data. Consequently, it is well suited for the study of synchroniza-
tion between spike activity and LFP oscillations in the olfactory
system of the freely breathing rat, where LFPs oscillate in at
least two frequency bands, 3 and <y, both regimes alternating
within each respiratory cycle (Buonviso et al., 2003).

2. Methods
2.1. Continuous wavelet transform and wavelet ridge

2.1.1. Continuous wavelet transform

In order to preserve time and frequency information, one
commonly uses time—frequency representation based on a win-
dowed Fourier transform (WFT) or a continuous wavelet trans-
form (CWT). We chose to use CWT instead of WFT because
the window size depends on the screened frequency, in case
of CWT, as opposed to WFT fixed window size. This repre-
sents an asset of the method since the duration of oscillations
often shortens as the frequency increases. CWT provides a better
compromise between time and frequency resolution. The CWT
yields a series of coefficients in time representing the evolution

of the frequency content (Mallat, 1998) of the signal x by:
Tex](t, a) = /x(s)llft’fa(s) ds a>0,teR

where ¢ stands for time, a for the scale and * for the complex
conjugate. The functions ¥, are obtained by dilation and trans-
lation of a unique waveform ¥ : ¥(t, a) = (1//a)¥((s — t)/a).
The function ¥, called mother wavelet, is a function with mean
value equal to zero, and is characterized by its center fre-
quency (fo), its spread in time o; = [ |¥(s)|% ds and its spread
in frequency oy = f |l2/(a))|2 dw (where ¥ indicates the Fourier
transform). By decreasing or increasing a, the basis function
¥, . s fitted to a segment of x(#); hence, a indirectly represents
the frequency of the signal. Squaring the results and divid-
ing by the scale Px(t, a) =|Tx(t, a)|2/a generates a time—scale
energy density distribution called normalized scalogram. Px(%,
a) represents the energy of the signal in a time—frequency
box whose center and size are defined by (¢, (fo/a)) and (aoy,
(ofla)), respectively: when f(=(fo/a)) increases (a decreases),
the time resolution improves and the frequency resolution wors-
ens. Different families of mother wavelets can be applied. The
choice is influenced by the nature of the information to be
extracted. For the determination of instantaneous frequency, the
most commonly used wavelet is the so-called Morlet wavelet
(Kronland-Martinet et al., 1987), defined in the time domain by
w(r) = (1/2m) e~27fole="*/2 and in the frequency domain by
lf/( f)=01/2m) e~ 27 (f _fO)z. A wavelet family is characterized
by the constant wy=2mfy. For large wq, frequency resolution
improves at the expense of time resolution. To obtain a wavelet
with mean value equal to zero, we need to set wg > 5 (Grossman
et al., 1989).

2.1.2. Wavelet ridge extraction

The method determining instantaneous frequency from
wavelet ridges was first proposed by Delprat et al. (1992) where
the phase coherence of the wavelet transform was used to obtain
a numerical estimate of the ridge. For noisy, and/or multi-
component signals, Carmona et al. (1997, 1999) proposed to use
the localization of the scalogram maxima instead. Note that the
detection algorithm is only a particular post-processing method
of a time—frequency transform. It can thus, be used with other
time—frequency energy representations such as WFT or more
generally the family of smoothed Wigner distributions (Auger
and Flandrin, 1995; Carmona et al., 1999).

Considering a sinusoidal signal given by the complex expo-
nential function: x(¢) = e 27T where fr denotes the fre-
quency, the wavelet transform of the signal is: Ty[x](t, a) =
Ja¥(afr) e 2

Substituting the Fourier transform of the Morlet wavelet
into this equation, we obtain for the normalized scalo-
gram Py(a, b) = (1/4n2)e_2”2(“fT_f0)2. Deriving this scalo-
gram with respect to a, we obtain (§ Px/da)(a, b) = fr(aft —
fo) e~27@r=f0)  In such conditions, the point (¢, ar) where
d8P«/da =0 verifies arfr — fo =0 and corresponds to the maxi-
mum energy of the scalogram. The scalogram is then essentially
maximum in the neighborhood of a curve ar(#), which is the
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